Characterization and evaluation of bilayer coating for enhanced localization and sustained drug delivery for fibrosis-induced ureteral stricture

Ureteral stricture is the second most prevalent urologic condition. In particular, fibrosis-induced ureteral strictures are the excessive deposition of collagen due to scarring. Fibroblast proliferation can be managed with Mitomycin C (MMC) drug that has been widely documented in cancer treatments....

Full description

Saved in:
Bibliographic Details
Main Author: Chin, Jia Wen
Other Authors: Subramanian Venkatraman
Format: Final Year Project
Language:English
Published: 2016
Subjects:
Online Access:http://hdl.handle.net/10356/66698
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-66698
record_format dspace
spelling sg-ntu-dr.10356-666982023-03-04T15:30:32Z Characterization and evaluation of bilayer coating for enhanced localization and sustained drug delivery for fibrosis-induced ureteral stricture Chin, Jia Wen Subramanian Venkatraman School of Materials Science and Engineering DRNTU::Engineering Ureteral stricture is the second most prevalent urologic condition. In particular, fibrosis-induced ureteral strictures are the excessive deposition of collagen due to scarring. Fibroblast proliferation can be managed with Mitomycin C (MMC) drug that has been widely documented in cancer treatments. However, an issue associated with drug release in the ureter is the low drug permeability of transitional membrane of ureter tissues. The drug permeability barrier can be overcome by direct contact of the drug and urothelium. The usage of a bilayer coating, consisting of a hydrogel layer and a drug-loaded polymer layer, allows for direct contact with the ureter walls upon swelling and drug delivery through the urothelium. This will enhance the local delivery of drugs and sustain drug delivery to treat chronic conditions. This project aims to synthesize a bilayer coating for enhanced localization and drug release over four weeks. PEGDA hydrogels of different concentration (5.0%, 7.5%, 10.0%) fabricated with 0.1% Irgacure 2959 were used for characterization through mass measurement and degradation studies. Ureteral stents of various thickness (20um, 50um, 100um) coating and drug concentrations (2.5%, 5.0%, 7.5%) were fabricated using spraycoating, and in vitro drug release studies were analysed using high-performance liquid chromatography. Mass and degradation studies of varied hydrogel concentration demonstrated that hydrogels of 7.5% and 10.0% concentration showed no leaching of by-products through a four-week period and are stable for usage through a four-week period, which is the therapeutic time window. The in vitro release studies highlighted that an increase in polymer coating thickness decreased the rate of drug released resulting from increased diffusion path length. Drug release rates also demonstrated a decrease with time due to an increase in diffusion path length. In addition, an increase in initial drug concentration decreased the drug released from PLC polymer matrix. However, drug concentration at 2.5% showed a discrepancy from predicted results. This discrepancy could be due to the lack of uniform drug dispersion and fabrication methods. Drug release rates of polymer layer exposed to surface modifications of ii UV radiation, plasma treatment and hydrogel layer did not show any significant difference when compared to stents coated with only the drug-loaded polymer coating. Hence, the hydrogel layer did not retard the diffusion of drug molecules to the surrounding aqueous medium. Exposure to UV radiation and plasma treatment likewise did not degrade polymer and drug on the coating surface. However, this study was not conducted through a four-week period as hydrogel layer had delaminated by the third week. Future work would be done to improve the adhesion of hydrogel and polymer layer. Furthermore, cell assays would be conducted to determine the therapeutic window of MMC drug. Bachelor of Engineering (Materials Engineering) 2016-04-21T03:40:13Z 2016-04-21T03:40:13Z 2016 Final Year Project (FYP) http://hdl.handle.net/10356/66698 en Nanyang Technological University 51 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering
spellingShingle DRNTU::Engineering
Chin, Jia Wen
Characterization and evaluation of bilayer coating for enhanced localization and sustained drug delivery for fibrosis-induced ureteral stricture
description Ureteral stricture is the second most prevalent urologic condition. In particular, fibrosis-induced ureteral strictures are the excessive deposition of collagen due to scarring. Fibroblast proliferation can be managed with Mitomycin C (MMC) drug that has been widely documented in cancer treatments. However, an issue associated with drug release in the ureter is the low drug permeability of transitional membrane of ureter tissues. The drug permeability barrier can be overcome by direct contact of the drug and urothelium. The usage of a bilayer coating, consisting of a hydrogel layer and a drug-loaded polymer layer, allows for direct contact with the ureter walls upon swelling and drug delivery through the urothelium. This will enhance the local delivery of drugs and sustain drug delivery to treat chronic conditions. This project aims to synthesize a bilayer coating for enhanced localization and drug release over four weeks. PEGDA hydrogels of different concentration (5.0%, 7.5%, 10.0%) fabricated with 0.1% Irgacure 2959 were used for characterization through mass measurement and degradation studies. Ureteral stents of various thickness (20um, 50um, 100um) coating and drug concentrations (2.5%, 5.0%, 7.5%) were fabricated using spraycoating, and in vitro drug release studies were analysed using high-performance liquid chromatography. Mass and degradation studies of varied hydrogel concentration demonstrated that hydrogels of 7.5% and 10.0% concentration showed no leaching of by-products through a four-week period and are stable for usage through a four-week period, which is the therapeutic time window. The in vitro release studies highlighted that an increase in polymer coating thickness decreased the rate of drug released resulting from increased diffusion path length. Drug release rates also demonstrated a decrease with time due to an increase in diffusion path length. In addition, an increase in initial drug concentration decreased the drug released from PLC polymer matrix. However, drug concentration at 2.5% showed a discrepancy from predicted results. This discrepancy could be due to the lack of uniform drug dispersion and fabrication methods. Drug release rates of polymer layer exposed to surface modifications of ii UV radiation, plasma treatment and hydrogel layer did not show any significant difference when compared to stents coated with only the drug-loaded polymer coating. Hence, the hydrogel layer did not retard the diffusion of drug molecules to the surrounding aqueous medium. Exposure to UV radiation and plasma treatment likewise did not degrade polymer and drug on the coating surface. However, this study was not conducted through a four-week period as hydrogel layer had delaminated by the third week. Future work would be done to improve the adhesion of hydrogel and polymer layer. Furthermore, cell assays would be conducted to determine the therapeutic window of MMC drug.
author2 Subramanian Venkatraman
author_facet Subramanian Venkatraman
Chin, Jia Wen
format Final Year Project
author Chin, Jia Wen
author_sort Chin, Jia Wen
title Characterization and evaluation of bilayer coating for enhanced localization and sustained drug delivery for fibrosis-induced ureteral stricture
title_short Characterization and evaluation of bilayer coating for enhanced localization and sustained drug delivery for fibrosis-induced ureteral stricture
title_full Characterization and evaluation of bilayer coating for enhanced localization and sustained drug delivery for fibrosis-induced ureteral stricture
title_fullStr Characterization and evaluation of bilayer coating for enhanced localization and sustained drug delivery for fibrosis-induced ureteral stricture
title_full_unstemmed Characterization and evaluation of bilayer coating for enhanced localization and sustained drug delivery for fibrosis-induced ureteral stricture
title_sort characterization and evaluation of bilayer coating for enhanced localization and sustained drug delivery for fibrosis-induced ureteral stricture
publishDate 2016
url http://hdl.handle.net/10356/66698
_version_ 1759857866308583424