Distributed optimal coordination across multiple decision-makers and its application to demand response in smart grids

With the prevalence of coupling engineering systems such as multi-agent systems, wireless networks and the smart grid, solving optimization problems across multiple decision-makers emerges to be of theoretical significance and practical relevance. Resource allocation for systems with limited resourc...

Full description

Saved in:
Bibliographic Details
Main Author: Ye, Maojiao
Other Authors: Hu Guoqiang
Format: Theses and Dissertations
Language:English
Published: 2016
Subjects:
Online Access:https://hdl.handle.net/10356/67002
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-67002
record_format dspace
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering
spellingShingle DRNTU::Engineering
Ye, Maojiao
Distributed optimal coordination across multiple decision-makers and its application to demand response in smart grids
description With the prevalence of coupling engineering systems such as multi-agent systems, wireless networks and the smart grid, solving optimization problems across multiple decision-makers emerges to be of theoretical significance and practical relevance. Resource allocation for systems with limited resources, energy consumption control for electricity users, and economic dispatch among a network of generators in smart grids are typical examples of multi-decision-maker optimization problems. These optimization problems are explored from the perspectives of non-cooperative games and networked optimization in this dissertation. The background, introduction and motivation for this topic are included in the first two chapters. The specific problems considered in the dissertation are summarized as follows. Energy consumption control among a network of electricity users in smart grids is considered. An aggregate game approach is proposed to solve it by noticing that the aggregate energy consumption is unknown to the electricity users during the energy consumption scheduling process. Average consensus based updating strategies are developed to search for the Nash equilibrium of the energy consumption game. A general energy consumption game with possibly multiple Nash equilibria is firstly explored. In this case, the Nash equilibrium is exponentially stable under the given strategy. In particular, energy consumption game (for heating ventilation and air conditioning systems) that admits a unique Nash equilibrium is then investigated. Based on the uniqueness of the Nash equilibrium, a non-local convergence result is derived. Furthermore, energy consumption games with stubborn players are studied. With the existence of stubborn players, the rational players' actions converge to a neighborhood of the best response strategies. By utilizing the proposed methods, the electricity users only need to communicate with their neighbors about their estimates on the averaged aggregate energy consumption. No private information is exchanged among the electricity users. Hence, the proposed methods are free of privacy concern. Since the Nash equilibrium may not be efficient from the system-level perspective, distributed optimization problems are investigated. In Chapter 4, a distributed extremum seeking framework is proposed to solve networked optimization problems. Under some conditions, the proposed method enables the agents' strategies to converge to the optimal solution without using the explicit expressions of the constraints functions, the cost functions or their gradients. Noticing that many engineering systems exhibit time-varying characteristic while continuous-time time-varying distributed optimization remains as an open problem, we consider it for systems with quadratic objective functions in this dissertation. Time-varying distributed optimization with neighboring coupled objective functions is firstly considered. A robust gradient based method is proposed to solve it. More generally coupled distributed optimization problems are then investigated by penalty function based methods. The penalty function based methods can be utilized to approximate the solution of the distributed optimization problem. The last problem considered is seeking the solution to non-cooperative games without using explicit model information. Different from existing works that regard the Nash equilibrium as a ``fixed point", Nash equilibrium is treated as a time-varying trajectory in this dissertation. The time-varying Nash equilibrium seeking problem is addressed by using an extremum seeking approach. Sinusoidal excitation signals are utilized in the extremum seeking loop to modulate and demodulate the players' actions. A delay-based subsystem is employed to estimate the gradient and a robust tracking strategy is designed to search for the Nash equilibrium based on the estimated gradients. For symmetric quadratic games, it is shown that the players' actions converge asymptotically to the Nash equilibrium trajectory. For more general quadratic games, a bounded convergence result is presented. In summary, this dissertation studies optimization problems across multiple decision-makers. If the decision-makers are self-interested, the problem may be modeled as non-cooperative games. Nash equilibrium seeking for non-cooperative games are considered. To achieve the system-level objective, networked optimization is investigated. An extremum seeking approach is proposed to solve it which is followed by some explorations on time-varying distributed optimization problems. To demonstrate the practical relevance of the non-cooperative games and the networked optimization problems, energy consumption control for electricity users in smart grids is studied.
author2 Hu Guoqiang
author_facet Hu Guoqiang
Ye, Maojiao
format Theses and Dissertations
author Ye, Maojiao
author_sort Ye, Maojiao
title Distributed optimal coordination across multiple decision-makers and its application to demand response in smart grids
title_short Distributed optimal coordination across multiple decision-makers and its application to demand response in smart grids
title_full Distributed optimal coordination across multiple decision-makers and its application to demand response in smart grids
title_fullStr Distributed optimal coordination across multiple decision-makers and its application to demand response in smart grids
title_full_unstemmed Distributed optimal coordination across multiple decision-makers and its application to demand response in smart grids
title_sort distributed optimal coordination across multiple decision-makers and its application to demand response in smart grids
publishDate 2016
url https://hdl.handle.net/10356/67002
_version_ 1772828403039207424
spelling sg-ntu-dr.10356-670022023-07-04T16:36:42Z Distributed optimal coordination across multiple decision-makers and its application to demand response in smart grids Ye, Maojiao Hu Guoqiang School of Electrical and Electronic Engineering DRNTU::Engineering With the prevalence of coupling engineering systems such as multi-agent systems, wireless networks and the smart grid, solving optimization problems across multiple decision-makers emerges to be of theoretical significance and practical relevance. Resource allocation for systems with limited resources, energy consumption control for electricity users, and economic dispatch among a network of generators in smart grids are typical examples of multi-decision-maker optimization problems. These optimization problems are explored from the perspectives of non-cooperative games and networked optimization in this dissertation. The background, introduction and motivation for this topic are included in the first two chapters. The specific problems considered in the dissertation are summarized as follows. Energy consumption control among a network of electricity users in smart grids is considered. An aggregate game approach is proposed to solve it by noticing that the aggregate energy consumption is unknown to the electricity users during the energy consumption scheduling process. Average consensus based updating strategies are developed to search for the Nash equilibrium of the energy consumption game. A general energy consumption game with possibly multiple Nash equilibria is firstly explored. In this case, the Nash equilibrium is exponentially stable under the given strategy. In particular, energy consumption game (for heating ventilation and air conditioning systems) that admits a unique Nash equilibrium is then investigated. Based on the uniqueness of the Nash equilibrium, a non-local convergence result is derived. Furthermore, energy consumption games with stubborn players are studied. With the existence of stubborn players, the rational players' actions converge to a neighborhood of the best response strategies. By utilizing the proposed methods, the electricity users only need to communicate with their neighbors about their estimates on the averaged aggregate energy consumption. No private information is exchanged among the electricity users. Hence, the proposed methods are free of privacy concern. Since the Nash equilibrium may not be efficient from the system-level perspective, distributed optimization problems are investigated. In Chapter 4, a distributed extremum seeking framework is proposed to solve networked optimization problems. Under some conditions, the proposed method enables the agents' strategies to converge to the optimal solution without using the explicit expressions of the constraints functions, the cost functions or their gradients. Noticing that many engineering systems exhibit time-varying characteristic while continuous-time time-varying distributed optimization remains as an open problem, we consider it for systems with quadratic objective functions in this dissertation. Time-varying distributed optimization with neighboring coupled objective functions is firstly considered. A robust gradient based method is proposed to solve it. More generally coupled distributed optimization problems are then investigated by penalty function based methods. The penalty function based methods can be utilized to approximate the solution of the distributed optimization problem. The last problem considered is seeking the solution to non-cooperative games without using explicit model information. Different from existing works that regard the Nash equilibrium as a ``fixed point", Nash equilibrium is treated as a time-varying trajectory in this dissertation. The time-varying Nash equilibrium seeking problem is addressed by using an extremum seeking approach. Sinusoidal excitation signals are utilized in the extremum seeking loop to modulate and demodulate the players' actions. A delay-based subsystem is employed to estimate the gradient and a robust tracking strategy is designed to search for the Nash equilibrium based on the estimated gradients. For symmetric quadratic games, it is shown that the players' actions converge asymptotically to the Nash equilibrium trajectory. For more general quadratic games, a bounded convergence result is presented. In summary, this dissertation studies optimization problems across multiple decision-makers. If the decision-makers are self-interested, the problem may be modeled as non-cooperative games. Nash equilibrium seeking for non-cooperative games are considered. To achieve the system-level objective, networked optimization is investigated. An extremum seeking approach is proposed to solve it which is followed by some explorations on time-varying distributed optimization problems. To demonstrate the practical relevance of the non-cooperative games and the networked optimization problems, energy consumption control for electricity users in smart grids is studied. DOCTOR OF PHILOSOPHY (EEE) 2016-05-10T07:01:38Z 2016-05-10T07:01:38Z 2016 Thesis Ye, M. (2016). Distributed optimal coordination across multiple decision-makers and its application to demand response in smart grids. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/67002 10.32657/10356/67002 en 162 p. application/pdf