Synthesis of gold nanoparticles by block copolymer technique for plasmonic organic photovoltaics

ABSTRACT The present day fossil fuels reserves are depleting with the advent of time. At this juncture, it becomes highly important to find an alternative source of energy to cater the world’s ever growing problem of energy. In this aspect the solar energy through photovoltaic conversion is the mos...

Full description

Saved in:
Bibliographic Details
Main Author: Venkata Kameshwar Rao, Irukuvarjula
Other Authors: Nripan Mathews
Format: Theses and Dissertations
Language:English
Published: 2016
Subjects:
Online Access:http://hdl.handle.net/10356/67031
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-67031
record_format dspace
spelling sg-ntu-dr.10356-670312023-02-28T23:51:22Z Synthesis of gold nanoparticles by block copolymer technique for plasmonic organic photovoltaics Venkata Kameshwar Rao, Irukuvarjula Nripan Mathews Sum Tze Chien School of Physical and Mathematical Sciences Energy Research Institute @ NTU DRNTU::Science::Physics::Optics and light ABSTRACT The present day fossil fuels reserves are depleting with the advent of time. At this juncture, it becomes highly important to find an alternative source of energy to cater the world’s ever growing problem of energy. In this aspect the solar energy through photovoltaic conversion is the most promising candidate for the long run energy generation. Intense research is being done in photovoltaics to reduce the cost of electricity generation using different materials with varying efficiencies. Thin film photovoltaic based on solution processable organic semiconductor offer a distinct advantage compared to its inorganic counterpart. Specifically they are light weight, flexible, solution processable, printable into sheets which enhances ease of mass production. etc. Added to this the power conversion efficiencies are exceeding above 10% on the device scale, paving the way from laboratory to mass production. Furthermore, utilising low band gap materials for enhancing absorption, new device architecture, replacing with newer contact materials to reduce the series resistance, use of various additives, doping of the active layer, utilising various light trapping techniques are done to enhance the efficiencies of these devices. The light trapping in the form of plasmonic structures to increase device performance is being explored in this work. A novel method of pattering the plasmonic structures, block copolymer technique is introduced. The obtained structures are inserted into the plasmonic organic photovoltaics. This is done to capture the far-field scattering and near-field light coupling to increase light absorption and exciton/charge generation, thereby resulting in an improved current density. The key to design and improvement lies in the ability to deeply understand the charge transfer dynamics; ultrafast technique like transient absorption spectroscopy (TAS) is used in this regard. We aim to fabricate periodic nanostructures using block copolymer technique. Gold nanoparticles are synthesised by the reduction of PS4-b-P2VP block copolymer loaded gold chloride using a reactive ion etching. Atomic force microscopy was used to observe the micelles, gold loaded micelles and gold nanoparticles formed on the surface. The sizes of the obtained nanoparticles are in the range from 5-50 nm and the occurrence of the absorption peak at 530 nm for the presence of the gold. Gold plasmonic P3HT: PCBM organic photovoltaic devices made with these nanoparticles, display lower power conversion efficiency compared to the standard device. Transient absorption study of plasmonic devices shows the similar charge transfer dynamics as with the standard sample. FDTD simulation of these Au nanoparticles revealed higher absorption cross-section compared to scattering from 15 nm to 70 nm sizes, leading to absorption of incoming light by nanoparticles and hence lower absorbance by active layer that results in poor plasmonic device performance (lower Jsc). As a further extension of this work, silver nanoparticles of varying size and spacing are simulated. In this plasmonic structure, absorption cross section is found to be dominating the scattering within 10 - 30 nm particle size. The increased absorption is used for near field light coupling and an inverted OPVs device structure is proposed for improving the Jsc. On further increasing the particle size from 50 - 70 nm, the scattering cross-section is found to be dominating the absorption. This mechanism is used for far field light scattering and correspondingly for increased current density of devices. ​Master of Science 2016-05-11T01:58:45Z 2016-05-11T01:58:45Z 2016 Thesis http://hdl.handle.net/10356/67031 en 53 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Science::Physics::Optics and light
spellingShingle DRNTU::Science::Physics::Optics and light
Venkata Kameshwar Rao, Irukuvarjula
Synthesis of gold nanoparticles by block copolymer technique for plasmonic organic photovoltaics
description ABSTRACT The present day fossil fuels reserves are depleting with the advent of time. At this juncture, it becomes highly important to find an alternative source of energy to cater the world’s ever growing problem of energy. In this aspect the solar energy through photovoltaic conversion is the most promising candidate for the long run energy generation. Intense research is being done in photovoltaics to reduce the cost of electricity generation using different materials with varying efficiencies. Thin film photovoltaic based on solution processable organic semiconductor offer a distinct advantage compared to its inorganic counterpart. Specifically they are light weight, flexible, solution processable, printable into sheets which enhances ease of mass production. etc. Added to this the power conversion efficiencies are exceeding above 10% on the device scale, paving the way from laboratory to mass production. Furthermore, utilising low band gap materials for enhancing absorption, new device architecture, replacing with newer contact materials to reduce the series resistance, use of various additives, doping of the active layer, utilising various light trapping techniques are done to enhance the efficiencies of these devices. The light trapping in the form of plasmonic structures to increase device performance is being explored in this work. A novel method of pattering the plasmonic structures, block copolymer technique is introduced. The obtained structures are inserted into the plasmonic organic photovoltaics. This is done to capture the far-field scattering and near-field light coupling to increase light absorption and exciton/charge generation, thereby resulting in an improved current density. The key to design and improvement lies in the ability to deeply understand the charge transfer dynamics; ultrafast technique like transient absorption spectroscopy (TAS) is used in this regard. We aim to fabricate periodic nanostructures using block copolymer technique. Gold nanoparticles are synthesised by the reduction of PS4-b-P2VP block copolymer loaded gold chloride using a reactive ion etching. Atomic force microscopy was used to observe the micelles, gold loaded micelles and gold nanoparticles formed on the surface. The sizes of the obtained nanoparticles are in the range from 5-50 nm and the occurrence of the absorption peak at 530 nm for the presence of the gold. Gold plasmonic P3HT: PCBM organic photovoltaic devices made with these nanoparticles, display lower power conversion efficiency compared to the standard device. Transient absorption study of plasmonic devices shows the similar charge transfer dynamics as with the standard sample. FDTD simulation of these Au nanoparticles revealed higher absorption cross-section compared to scattering from 15 nm to 70 nm sizes, leading to absorption of incoming light by nanoparticles and hence lower absorbance by active layer that results in poor plasmonic device performance (lower Jsc). As a further extension of this work, silver nanoparticles of varying size and spacing are simulated. In this plasmonic structure, absorption cross section is found to be dominating the scattering within 10 - 30 nm particle size. The increased absorption is used for near field light coupling and an inverted OPVs device structure is proposed for improving the Jsc. On further increasing the particle size from 50 - 70 nm, the scattering cross-section is found to be dominating the absorption. This mechanism is used for far field light scattering and correspondingly for increased current density of devices.
author2 Nripan Mathews
author_facet Nripan Mathews
Venkata Kameshwar Rao, Irukuvarjula
format Theses and Dissertations
author Venkata Kameshwar Rao, Irukuvarjula
author_sort Venkata Kameshwar Rao, Irukuvarjula
title Synthesis of gold nanoparticles by block copolymer technique for plasmonic organic photovoltaics
title_short Synthesis of gold nanoparticles by block copolymer technique for plasmonic organic photovoltaics
title_full Synthesis of gold nanoparticles by block copolymer technique for plasmonic organic photovoltaics
title_fullStr Synthesis of gold nanoparticles by block copolymer technique for plasmonic organic photovoltaics
title_full_unstemmed Synthesis of gold nanoparticles by block copolymer technique for plasmonic organic photovoltaics
title_sort synthesis of gold nanoparticles by block copolymer technique for plasmonic organic photovoltaics
publishDate 2016
url http://hdl.handle.net/10356/67031
_version_ 1759856586770087936