Learning spike time codes through supervised and unsupervised structural plasticity
Large-scale spiking neural networks (SNN) are typically implemented on the chip by using mixed analog-digital circuits. While the models of the network components (neurons, synapses, and dendrites) are implemented by analog VLSI techniques, the connectivity information of the network is stored in an...
Saved in:
主要作者: | |
---|---|
其他作者: | |
格式: | Theses and Dissertations |
語言: | English |
出版: |
2016
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/67327 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|