Development of fiber-reinforced reactive Mgo cement composites

Fiber-reinforced strain-hardening cementitious composites (SHC) exhibit ultra-high tensile strain capacity and are used in both modern construction and repairing a deteriorating building. One major disadvantage of SHC is its high Portland cement (PC) content, which is associated with high energy req...

Full description

Saved in:
Bibliographic Details
Main Author: Ong, Jacon
Other Authors: Yang En Hua
Format: Final Year Project
Language:English
Published: 2016
Subjects:
Online Access:http://hdl.handle.net/10356/67536
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Fiber-reinforced strain-hardening cementitious composites (SHC) exhibit ultra-high tensile strain capacity and are used in both modern construction and repairing a deteriorating building. One major disadvantage of SHC is its high Portland cement (PC) content, which is associated with high energy requirement during production and CO2 emissions. Reactive magnesia (MgO) cements present sustainability advantages to PC due to their ability to sequester CO2 during hardening. This research project focuses on the development of SHC involving reactive MgO and fly ash as compared to PC as the main binder component Polyvinyl alcohol (PVA) fibers with different lengths and surface oil contents were used to reinforce the MgO and fly ash-based matrix. Rheological test was conducted to determine mix for optimum fiber dispersion. Uniaxial tensile and four-point bending test results show the ability of the prepared mixes in achieving tensile strain-hardening behavior and ultra-high strain capacity