Modeling renography data and formulating indices for quantitative means in differentiating kidney obstruction

The kidney is an organ essential to the urinary system of a body. It is responsible for blood filtration in getting rid of soluble waste material, while maintaining homeostatic functions in a body. Therefore, knowing the health status of the kidney is very much important in the medical field. A form...

Full description

Saved in:
Bibliographic Details
Main Author: Then, Sing Yick
Other Authors: Ng Yin Kwee
Format: Final Year Project
Language:English
Published: 2016
Subjects:
Online Access:http://hdl.handle.net/10356/67901
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-67901
record_format dspace
spelling sg-ntu-dr.10356-679012023-03-04T19:03:18Z Modeling renography data and formulating indices for quantitative means in differentiating kidney obstruction Then, Sing Yick Ng Yin Kwee School of Mechanical and Aerospace Engineering DRNTU::Engineering The kidney is an organ essential to the urinary system of a body. It is responsible for blood filtration in getting rid of soluble waste material, while maintaining homeostatic functions in a body. Therefore, knowing the health status of the kidney is very much important in the medical field. A form of imaging technique, known as renography is used to diagnose renal obstruction. Due to the absence of standard procedures being applied in clinical setting for such evaluation, this project aims to look at other non-invasive method that diagnoses renal obstruction. From the quantification of renogram, a standard benchmark evaluation for each severity condition can be provided. Hence, the behavior of tracer flow starting from injection to filtration process and later out from the renal pelvis was modeled through compartmental analysis. With the model, mathematical expressions were developed to form critical index, which was compared with doctor’s clinical evaluations. A numerical benchmark for each severity case could then be determined through the comparisons. The index determined was trained on support vector machine (SVM), random forest and adaboost classifier so as to predict the obstruction level of other kidney samples. The predicted results were compared with actual clinical interpretations to identify the predicting accuracy of the classifiers. The performance of the classifiers was further evaluated by Receiver Operating Characteristic (ROC) to obtain a final preferable decision. Bachelor of Engineering (Mechanical Engineering) 2016-05-23T06:45:15Z 2016-05-23T06:45:15Z 2016 Final Year Project (FYP) http://hdl.handle.net/10356/67901 en Nanyang Technological University 121 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering
spellingShingle DRNTU::Engineering
Then, Sing Yick
Modeling renography data and formulating indices for quantitative means in differentiating kidney obstruction
description The kidney is an organ essential to the urinary system of a body. It is responsible for blood filtration in getting rid of soluble waste material, while maintaining homeostatic functions in a body. Therefore, knowing the health status of the kidney is very much important in the medical field. A form of imaging technique, known as renography is used to diagnose renal obstruction. Due to the absence of standard procedures being applied in clinical setting for such evaluation, this project aims to look at other non-invasive method that diagnoses renal obstruction. From the quantification of renogram, a standard benchmark evaluation for each severity condition can be provided. Hence, the behavior of tracer flow starting from injection to filtration process and later out from the renal pelvis was modeled through compartmental analysis. With the model, mathematical expressions were developed to form critical index, which was compared with doctor’s clinical evaluations. A numerical benchmark for each severity case could then be determined through the comparisons. The index determined was trained on support vector machine (SVM), random forest and adaboost classifier so as to predict the obstruction level of other kidney samples. The predicted results were compared with actual clinical interpretations to identify the predicting accuracy of the classifiers. The performance of the classifiers was further evaluated by Receiver Operating Characteristic (ROC) to obtain a final preferable decision.
author2 Ng Yin Kwee
author_facet Ng Yin Kwee
Then, Sing Yick
format Final Year Project
author Then, Sing Yick
author_sort Then, Sing Yick
title Modeling renography data and formulating indices for quantitative means in differentiating kidney obstruction
title_short Modeling renography data and formulating indices for quantitative means in differentiating kidney obstruction
title_full Modeling renography data and formulating indices for quantitative means in differentiating kidney obstruction
title_fullStr Modeling renography data and formulating indices for quantitative means in differentiating kidney obstruction
title_full_unstemmed Modeling renography data and formulating indices for quantitative means in differentiating kidney obstruction
title_sort modeling renography data and formulating indices for quantitative means in differentiating kidney obstruction
publishDate 2016
url http://hdl.handle.net/10356/67901
_version_ 1759853459258998784