Sensor data collection and visualization for self-care indoor environment monitoring systems
It is known that human beings spend 90% of their lifetime indoor, and this ratio is still in a growth trend with the development of internet services and emergence of new technologies. In consequence, people start paying more attention to maintaining a healthy indoor environment condition. However,...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/67934 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-67934 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-679342023-07-07T15:42:09Z Sensor data collection and visualization for self-care indoor environment monitoring systems Wang, Rui Hu Guoqiang School of Electrical and Electronic Engineering DRNTU::Engineering It is known that human beings spend 90% of their lifetime indoor, and this ratio is still in a growth trend with the development of internet services and emergence of new technologies. In consequence, people start paying more attention to maintaining a healthy indoor environment condition. However, the existing indoor environment monitoring products in the market are commonly facing the problem of high cost, unable to check historian environment data and not user specific. Therefore, an innovative indoor environment monitoring and control system is designed and implemented in this Final Year Project to overcome those limitations. The system is developed through 4 stages: data collection, data analysis data visualization and indoor environment control. Multiple sensors are connected to the microcontroller Raspberry Pi though GPIO to set up the basic environment factors data collection system. User’s preference towards environment condition is learned by random forest algorithm through continuous data training and a user specific comfort model is then developed. With web application development, functions of real-time data visualization, historian data trend checking, and healthy environment maintenance recommendation are fulfilled. With the aid of the indoor environment monitoring system developed in this project, people can check potential unhealthy hazard for the environment they care about via any internet terminal and take timely action to maintain a comfortable space for themselves and their family. Bachelor of Engineering 2016-05-23T07:35:50Z 2016-05-23T07:35:50Z 2016 Final Year Project (FYP) http://hdl.handle.net/10356/67934 en Nanyang Technological University 142 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering |
spellingShingle |
DRNTU::Engineering Wang, Rui Sensor data collection and visualization for self-care indoor environment monitoring systems |
description |
It is known that human beings spend 90% of their lifetime indoor, and this ratio is still in a growth trend with the development of internet services and emergence of new technologies. In consequence, people start paying more attention to maintaining a healthy indoor environment condition. However, the existing indoor environment monitoring products in the market are commonly facing the problem of high cost, unable to check historian environment data and not user specific. Therefore, an innovative indoor environment monitoring and control system is designed and implemented in this Final Year Project to overcome those limitations.
The system is developed through 4 stages: data collection, data analysis data visualization and indoor environment control. Multiple sensors are connected to the microcontroller Raspberry Pi though GPIO to set up the basic environment factors data collection system. User’s preference towards environment condition is learned by random forest algorithm through continuous data training and a user specific comfort model is then developed. With web application development, functions of real-time data visualization, historian data trend checking, and healthy environment maintenance recommendation are fulfilled.
With the aid of the indoor environment monitoring system developed in this project, people can check potential unhealthy hazard for the environment they care about via any internet terminal and take timely action to maintain a comfortable space for themselves and their family. |
author2 |
Hu Guoqiang |
author_facet |
Hu Guoqiang Wang, Rui |
format |
Final Year Project |
author |
Wang, Rui |
author_sort |
Wang, Rui |
title |
Sensor data collection and visualization for self-care indoor environment monitoring systems |
title_short |
Sensor data collection and visualization for self-care indoor environment monitoring systems |
title_full |
Sensor data collection and visualization for self-care indoor environment monitoring systems |
title_fullStr |
Sensor data collection and visualization for self-care indoor environment monitoring systems |
title_full_unstemmed |
Sensor data collection and visualization for self-care indoor environment monitoring systems |
title_sort |
sensor data collection and visualization for self-care indoor environment monitoring systems |
publishDate |
2016 |
url |
http://hdl.handle.net/10356/67934 |
_version_ |
1772828110294614016 |