Protective coating for dental application
Initial adhesion of microorganisms to acrylic resin denture is a vital step to their colonization. This phenomenon is dependent on the surface properties of the acrylic resin denture. Therefore, surface modification is of paramount importance to modulate the adhesion of microorganisms. Carboxybetain...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/67954 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-67954 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-679542023-03-03T15:34:04Z Protective coating for dental application Ng, Michelle Hui Xuan Teoh Swee Hin School of Chemical and Biomedical Engineering DRNTU::Science Initial adhesion of microorganisms to acrylic resin denture is a vital step to their colonization. This phenomenon is dependent on the surface properties of the acrylic resin denture. Therefore, surface modification is of paramount importance to modulate the adhesion of microorganisms. Carboxybetaine methacrylate (CBMA) and sulfobetaine vinylimidazole (SBVI) have demonstrated remarkable antifouling properties. In this study, 1) a single layer coating in different concentration and 2) same concentration with different number of layers of coating using CBMA and SBVI were studied. Surface characteristics were examined to determine the performance of the coatings to minimize the adhesion of microorganisms. Compared to the uncoated control, results had shown a significant increase in hydrophilicity and reduction in roughness in CBMA and SBVI coated acrylic resin samples. Bacterial adhesion test indicated that 2-layer SBVI coating had the best antifouling property with 81% reduction in E. faecalis adhesion compared to the uncoated control. It was also noticed that the performance in E. faecalis adhesion on CBMA and SBVI coating was very different despite their similar hydrophilicity and surface roughness. This implies that the chemical composition of the agents may be a determinant factor for the coating performance in bacterial adhesion. Bachelor of Engineering (Chemical and Biomolecular Engineering) 2016-05-23T08:18:44Z 2016-05-23T08:18:44Z 2016 Final Year Project (FYP) http://hdl.handle.net/10356/67954 en Nanyang Technological University 67 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science |
spellingShingle |
DRNTU::Science Ng, Michelle Hui Xuan Protective coating for dental application |
description |
Initial adhesion of microorganisms to acrylic resin denture is a vital step to their colonization. This phenomenon is dependent on the surface properties of the acrylic resin denture. Therefore, surface modification is of paramount importance to modulate the adhesion of microorganisms. Carboxybetaine methacrylate (CBMA) and sulfobetaine vinylimidazole (SBVI) have demonstrated remarkable antifouling properties. In this study, 1) a single layer coating in different concentration and 2) same concentration with different number of layers of coating using CBMA and SBVI were studied. Surface characteristics were examined to determine the performance of the coatings to minimize the adhesion of microorganisms. Compared to the uncoated control, results had shown a significant increase in hydrophilicity and reduction in roughness in CBMA and SBVI coated acrylic resin samples. Bacterial adhesion test indicated that 2-layer SBVI coating had the best antifouling property with 81% reduction in E. faecalis adhesion compared to the uncoated control. It was also noticed that the performance in E. faecalis adhesion on CBMA and SBVI coating was very different despite their similar hydrophilicity and surface roughness. This implies that the chemical composition of the agents may be a determinant factor for the coating performance in bacterial adhesion. |
author2 |
Teoh Swee Hin |
author_facet |
Teoh Swee Hin Ng, Michelle Hui Xuan |
format |
Final Year Project |
author |
Ng, Michelle Hui Xuan |
author_sort |
Ng, Michelle Hui Xuan |
title |
Protective coating for dental application |
title_short |
Protective coating for dental application |
title_full |
Protective coating for dental application |
title_fullStr |
Protective coating for dental application |
title_full_unstemmed |
Protective coating for dental application |
title_sort |
protective coating for dental application |
publishDate |
2016 |
url |
http://hdl.handle.net/10356/67954 |
_version_ |
1759854282771791872 |