Study of cyclic antibacterial polymers
The pervasiveness of microbial infections and the development of resistance in bacteria against traditional antibiotics have created a need for an alternative solution. Synthetic materials such as cationic cyclic Poly 2-(dimethylamino)ethyl methacrylate copolymerized with tert-butyl methacrylate P(D...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/68443 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-68443 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-684432023-03-03T16:02:16Z Study of cyclic antibacterial polymers Sagar, Kundan Kumar Duan Hongwei School of Chemical and Biomedical Engineering DRNTU::Engineering::Bioengineering The pervasiveness of microbial infections and the development of resistance in bacteria against traditional antibiotics have created a need for an alternative solution. Synthetic materials such as cationic cyclic Poly 2-(dimethylamino)ethyl methacrylate copolymerized with tert-butyl methacrylate P(DMAEMA-co-tBMA) are of interest due to the difficulty for bacteria to modify their entire cell membrane to develop resistance. This paper reports the successful synthesis of the cyclic and linear architectures of cationic P(DMAEMA-co-tBMA) to investigate and compare their respective antimicrobial properties. The two variants were polymerized utilizing ATRP and the cyclic structure was obtained via intra-chain ‘click’ cyclization. They were then characterized using nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR) and size exclusion chromatography (SEC). The antimicrobial properties were tested using minimum inhibitory concentration (MIC) tests, live/dead assays and SEM to assess cell viability and effects that polymers have on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) cell membranes. The MIC tests show that cyclic structures have superior antimicrobial effects in comparison to linear structures. In the case of E. coli, cyclic structures required 78 μg/ml MIC as compared to 156 μg/ml for linear and 40 μg/ml vs 78 μg/ml for S. aureus. This could be attributed to the smaller hydrodynamic diameter of cyclic probably due to self-assembly which condenses the cationic charges and increases electrostatic interactions with bacteria cell walls. Master of Science (Biomedical Engineering) 2016-05-26T02:39:14Z 2016-05-26T02:39:14Z 2016 Thesis http://hdl.handle.net/10356/68443 en 58 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Bioengineering |
spellingShingle |
DRNTU::Engineering::Bioengineering Sagar, Kundan Kumar Study of cyclic antibacterial polymers |
description |
The pervasiveness of microbial infections and the development of resistance in bacteria against traditional antibiotics have created a need for an alternative solution. Synthetic materials such as cationic cyclic Poly 2-(dimethylamino)ethyl methacrylate copolymerized with tert-butyl methacrylate P(DMAEMA-co-tBMA) are of interest due to the difficulty for bacteria to modify their entire cell membrane to develop resistance. This paper reports the successful synthesis of the cyclic and linear architectures of cationic P(DMAEMA-co-tBMA) to investigate and compare their respective antimicrobial properties. The two variants were polymerized utilizing ATRP and the cyclic structure was obtained via intra-chain ‘click’ cyclization. They were then characterized using nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR) and size exclusion chromatography (SEC). The antimicrobial properties were tested using minimum inhibitory concentration (MIC) tests, live/dead assays and SEM to assess cell viability and effects that polymers have on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) cell membranes. The MIC tests show that cyclic structures have superior antimicrobial effects in comparison to linear structures. In the case of E. coli, cyclic structures required 78 μg/ml MIC as compared to 156 μg/ml for linear and 40 μg/ml vs 78 μg/ml for S. aureus. This could be attributed to the smaller hydrodynamic diameter of cyclic probably due to self-assembly which condenses the cationic charges and increases electrostatic interactions with bacteria cell walls. |
author2 |
Duan Hongwei |
author_facet |
Duan Hongwei Sagar, Kundan Kumar |
format |
Theses and Dissertations |
author |
Sagar, Kundan Kumar |
author_sort |
Sagar, Kundan Kumar |
title |
Study of cyclic antibacterial polymers |
title_short |
Study of cyclic antibacterial polymers |
title_full |
Study of cyclic antibacterial polymers |
title_fullStr |
Study of cyclic antibacterial polymers |
title_full_unstemmed |
Study of cyclic antibacterial polymers |
title_sort |
study of cyclic antibacterial polymers |
publishDate |
2016 |
url |
http://hdl.handle.net/10356/68443 |
_version_ |
1759855404095897600 |