A study of material condensation on liquid substrates

This thesis aims to establish the influence of a liquid substrate on material deposition. The influence of a liquid substrate is explored by a comparative study with an amorphous solid counterpart. Simultaneous gold vapor deposition onto both silicone oil and amorphous carbon was carried out and the...

Full description

Saved in:
Bibliographic Details
Main Author: Anantha P
Other Authors: Wong Chee Cheong
Format: Theses and Dissertations
Language:English
Published: 2016
Subjects:
Online Access:https://hdl.handle.net/10356/68587
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-68587
record_format dspace
spelling sg-ntu-dr.10356-685872023-03-04T16:37:11Z A study of material condensation on liquid substrates Anantha P Wong Chee Cheong School of Materials Science & Engineering DRNTU::Engineering::Materials This thesis aims to establish the influence of a liquid substrate on material deposition. The influence of a liquid substrate is explored by a comparative study with an amorphous solid counterpart. Simultaneous gold vapor deposition onto both silicone oil and amorphous carbon was carried out and the morphologies were found to be highly dissimilar. A uniform distribution of condensate following the conventional growth mechanism was observed on the solid substrate. However, on the other hand, low coverage with large empty regions were prevalent on the liquid substrate. This thesis deduces that the effect is due to structural differences between the two substrates. The magnitude of the response of the liquid to the depositing atoms causes the depositing atoms to undergo either desorption or diffusion. The resulting morphology is related to the affinity of the condensing species and momentum transfer accompanying deposition. In the case of gold vapor deposition, weak interacting forces, combined with higher atomic mass of gold, leads to additional desorption events, giving rise to low coverage condensate on the liquid substrate. Delayed secondary nucleation, along with multilayer growth, is also observed. Therefore, under weak binding forces, a liquid substrate prefers condensate growth over coverage. Furthermore, this mechanism is verified by simulating via the kinetic Monte Carlo technique, the nucleation and growth on a liquid substrate. The simulated morphologies under liquid substrate conditions match well with experimentally observed morphologies. The deposition of copper on the surface of silicone oil resulted in monodisperse nanoparticles uniformly distributed over the surface. This distinct morphology is attributed to differences in the response of the liquid substrate (additional desorption / diffusion events). A novel phenomenon called shared coarsening, for synthesis of uniformly sized particles on a 2D surface is proposed for particle growth on liquid surfaces. It is the simultaneous coarsening of a smaller particle by several similarly sized larger particles, resulting in monodispersity. Increased diffusion mobility of adatoms on the liquid surface along with an appropriate spatial distribution of the particles is critical for shared coarsening. Thus, a facile nanoparticle synthesis approach has been developed. A condensate - substrate interaction model has been developed which defines the morphological outcome. Deposition of silver and aluminum onto silicone oil has been studied. The effects of the condensate mass on the perturbation of the liquid molecular arrangement, along with their affinity towards the substrate are discussed. The limitation of a molecular liquid substrate to provide particle stability is overcome by fabrication of highly monodispersed gold nanoparticles on the surface of an ionic liquid. The ionic liquid yields shared coarsening, resulting in spherical particles with uniform size distribution. Thus our model and experiments were utilized to synthesize novel monodispsered nanoparticles. In summary, vapor condensation onto liquid substrates was studied by determining the effect of the kinetics of nucleation and growth on condensate morphology. The new concepts introduced, along with the synthesis method developed here are thus a step forward to understand and exploit material condensation on liquid substrates. DOCTOR OF PHILOSOPHY (MSE) 2016-05-27T07:09:43Z 2016-05-27T07:09:43Z 2016 Thesis Anantha P. (2016). A study of material condensation on liquid substrates. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/68587 10.32657/10356/68587 en 216 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Materials
spellingShingle DRNTU::Engineering::Materials
Anantha P
A study of material condensation on liquid substrates
description This thesis aims to establish the influence of a liquid substrate on material deposition. The influence of a liquid substrate is explored by a comparative study with an amorphous solid counterpart. Simultaneous gold vapor deposition onto both silicone oil and amorphous carbon was carried out and the morphologies were found to be highly dissimilar. A uniform distribution of condensate following the conventional growth mechanism was observed on the solid substrate. However, on the other hand, low coverage with large empty regions were prevalent on the liquid substrate. This thesis deduces that the effect is due to structural differences between the two substrates. The magnitude of the response of the liquid to the depositing atoms causes the depositing atoms to undergo either desorption or diffusion. The resulting morphology is related to the affinity of the condensing species and momentum transfer accompanying deposition. In the case of gold vapor deposition, weak interacting forces, combined with higher atomic mass of gold, leads to additional desorption events, giving rise to low coverage condensate on the liquid substrate. Delayed secondary nucleation, along with multilayer growth, is also observed. Therefore, under weak binding forces, a liquid substrate prefers condensate growth over coverage. Furthermore, this mechanism is verified by simulating via the kinetic Monte Carlo technique, the nucleation and growth on a liquid substrate. The simulated morphologies under liquid substrate conditions match well with experimentally observed morphologies. The deposition of copper on the surface of silicone oil resulted in monodisperse nanoparticles uniformly distributed over the surface. This distinct morphology is attributed to differences in the response of the liquid substrate (additional desorption / diffusion events). A novel phenomenon called shared coarsening, for synthesis of uniformly sized particles on a 2D surface is proposed for particle growth on liquid surfaces. It is the simultaneous coarsening of a smaller particle by several similarly sized larger particles, resulting in monodispersity. Increased diffusion mobility of adatoms on the liquid surface along with an appropriate spatial distribution of the particles is critical for shared coarsening. Thus, a facile nanoparticle synthesis approach has been developed. A condensate - substrate interaction model has been developed which defines the morphological outcome. Deposition of silver and aluminum onto silicone oil has been studied. The effects of the condensate mass on the perturbation of the liquid molecular arrangement, along with their affinity towards the substrate are discussed. The limitation of a molecular liquid substrate to provide particle stability is overcome by fabrication of highly monodispersed gold nanoparticles on the surface of an ionic liquid. The ionic liquid yields shared coarsening, resulting in spherical particles with uniform size distribution. Thus our model and experiments were utilized to synthesize novel monodispsered nanoparticles. In summary, vapor condensation onto liquid substrates was studied by determining the effect of the kinetics of nucleation and growth on condensate morphology. The new concepts introduced, along with the synthesis method developed here are thus a step forward to understand and exploit material condensation on liquid substrates.
author2 Wong Chee Cheong
author_facet Wong Chee Cheong
Anantha P
format Theses and Dissertations
author Anantha P
author_sort Anantha P
title A study of material condensation on liquid substrates
title_short A study of material condensation on liquid substrates
title_full A study of material condensation on liquid substrates
title_fullStr A study of material condensation on liquid substrates
title_full_unstemmed A study of material condensation on liquid substrates
title_sort study of material condensation on liquid substrates
publishDate 2016
url https://hdl.handle.net/10356/68587
_version_ 1759857384072675328