High-yield synthesis, optical properties and photocatalytic performance of graphitic carbon nitride
Graphitic carbon nitride (g-C3N4), an emerging graphene-like two-dimensional (2D) material, has received wide attention by its fascinating photocatalytic performances as a photocatalyst in a variety of photocatalytic reactions such as photocatalytic water splitting and photocatalytic degradation. Ow...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/68843 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-68843 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-688432023-02-28T23:41:51Z High-yield synthesis, optical properties and photocatalytic performance of graphitic carbon nitride Yuan, Yanwen Xiong Qihua School of Physical and Mathematical Sciences DRNTU::Science Graphitic carbon nitride (g-C3N4), an emerging graphene-like two-dimensional (2D) material, has received wide attention by its fascinating photocatalytic performances as a photocatalyst in a variety of photocatalytic reactions such as photocatalytic water splitting and photocatalytic degradation. Owing to a bandgap of 2.7 eV, g-C3N4 is able to make use of the renewable and sustainable solar energy and conduct photocatalytic reaction under visible-light. Moreover, g-C3N4 is inexpensive, abundant and eco-friendly. It also has high thermal and chemical stability. Therefore, researchers believe that g-C3N4 is the most promising photocatalyst to serve in environmental protection and energy conservation. Studies on the chemical, optical and photocatalytic properties of g-C3N4 is very important and of great interests to the public. In the thesis, we report the synthesis, characterizations, and photocatalytic application of g-C3N4 products. High-yield synthesis of g-C3N4 powder via sealed heating method and half-sealed heating method are demonstrated. Based on the g-C3N4 powder, the g-C3N4 films are further produced by vacuum heating deposition and thermal evaporator. The chemical composition and crystallization of the as-prepared g-C3N4 products are demonstrated by multiple characterizations such as thermal gravimetric analysis, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning transmission electron microscopy and electron energy loss spectroscopy. On the other hand, a systematic optical study of g-C3N4 is carried out with several approaches. Using infrared and Raman spectroscopy, the chemical band vibrational modes of g-C3N4 products are revealed, and the absorption and emission property of g-C3N4 are investigated by UV-visible spectroscopy and photoluminescence spectroscopy. Moreover, the photocatalytic property of g-C3N4 is explored by the photodegradation experiment. We also build g-C3N4\hematite heterojunctions and study its photocatalytic water splitting performance. Doctor of Philosophy (SPMS) 2016-06-10T02:40:48Z 2016-06-10T02:40:48Z 2016 Thesis http://hdl.handle.net/10356/68843 en 153 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science |
spellingShingle |
DRNTU::Science Yuan, Yanwen High-yield synthesis, optical properties and photocatalytic performance of graphitic carbon nitride |
description |
Graphitic carbon nitride (g-C3N4), an emerging graphene-like two-dimensional (2D) material, has received wide attention by its fascinating photocatalytic performances as a photocatalyst in a variety of photocatalytic reactions such as photocatalytic water splitting and photocatalytic degradation. Owing to a bandgap of 2.7 eV, g-C3N4 is able to make use of the renewable and sustainable solar energy and conduct photocatalytic reaction under visible-light. Moreover, g-C3N4 is inexpensive, abundant and eco-friendly. It also has high thermal and chemical stability. Therefore, researchers believe that g-C3N4 is the most promising photocatalyst to serve in environmental protection and energy conservation. Studies on the chemical, optical and photocatalytic properties of g-C3N4 is very important and of great interests to the public.
In the thesis, we report the synthesis, characterizations, and photocatalytic application of g-C3N4 products. High-yield synthesis of g-C3N4 powder via sealed heating method and half-sealed heating method are demonstrated. Based on the g-C3N4 powder, the g-C3N4 films are further produced by vacuum heating deposition and thermal evaporator. The chemical composition and crystallization of the as-prepared g-C3N4 products are demonstrated by multiple characterizations such as thermal gravimetric analysis, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning transmission electron microscopy and electron energy loss spectroscopy. On the other hand, a systematic optical study of g-C3N4 is carried out with several approaches. Using infrared and Raman spectroscopy, the chemical band vibrational modes of g-C3N4 products are revealed, and the absorption and emission property of g-C3N4 are investigated by UV-visible spectroscopy and photoluminescence spectroscopy. Moreover, the photocatalytic property of g-C3N4 is explored by the photodegradation experiment. We also build g-C3N4\hematite heterojunctions and study its photocatalytic water splitting performance. |
author2 |
Xiong Qihua |
author_facet |
Xiong Qihua Yuan, Yanwen |
format |
Theses and Dissertations |
author |
Yuan, Yanwen |
author_sort |
Yuan, Yanwen |
title |
High-yield synthesis, optical properties and photocatalytic performance of graphitic carbon nitride |
title_short |
High-yield synthesis, optical properties and photocatalytic performance of graphitic carbon nitride |
title_full |
High-yield synthesis, optical properties and photocatalytic performance of graphitic carbon nitride |
title_fullStr |
High-yield synthesis, optical properties and photocatalytic performance of graphitic carbon nitride |
title_full_unstemmed |
High-yield synthesis, optical properties and photocatalytic performance of graphitic carbon nitride |
title_sort |
high-yield synthesis, optical properties and photocatalytic performance of graphitic carbon nitride |
publishDate |
2016 |
url |
http://hdl.handle.net/10356/68843 |
_version_ |
1759855004016967680 |