The largest eigenvalue of large random matrices and its application

This thesis is concerned about the asymptotic behavior of the largest eigenvalues for some random matrices and their applications for high-dimensional data analysis. The first type of random matrix is the F-type matrix. More precisely, let $\bbA_p=\frac{\bbY\bbY^*}{m}$ and $\bbB_p=\frac{\bbX\b...

Full description

Saved in:
Bibliographic Details
Main Author: Han, Xiao
Other Authors: Pan Guangming
Format: Theses and Dissertations
Language:English
Published: 2016
Subjects:
Online Access:http://hdl.handle.net/10356/69019
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-69019
record_format dspace
spelling sg-ntu-dr.10356-690192023-02-28T23:59:16Z The largest eigenvalue of large random matrices and its application Han, Xiao Pan Guangming School of Physical and Mathematical Sciences DRNTU::Science This thesis is concerned about the asymptotic behavior of the largest eigenvalues for some random matrices and their applications for high-dimensional data analysis. The first type of random matrix is the F-type matrix. More precisely, let $\bbA_p=\frac{\bbY\bbY^*}{m}$ and $\bbB_p=\frac{\bbX\bbX^*}{n}$ be two independent random matrices, where $\bbX=(X_{ij})_{p \times n}$, $\bbY=(Y_{ij})_{p \times m}$ and all entries are real (or complex) independent random variables with $\mathbf{E}X_{ij}=\mathbf{E}Y_{ij}=0$, $\mathbf{E}|X_{ij}|^2=\mathbf{E}|Y_{ij}|^2=1$. Denote the largest root of the determinantal equation $\det(\lambda \bbA_p-\bbB_p)=0$ by $\lambda_{1}$, which can be considered as a general version of the largest eigenvalue of the F matrix. We establish the Tracy-Widom Law for $\lambda_{1}$ under some mild conditions when both $\frac{p}{m}$ and $\frac{p}{n}$ tend to some positive constants as $p\rightarrow\infty$. More applications are given based on this limiting distribution of $\lambda_1$. The second type of random matrix is the sample covariance-type matrix. This type of random matrix is proposed to deal with the high-dimensional change point detection problem. By modifying the classic sample covariance matrix and then developing the corresponding asymptotic behavior of its largest eigenvalue, without any estimators, this thesis suggests an optimization approach that can figure out both the unknown number of change points and multiple change point positions simultaneously. Moreover, the largest eigenvalue of this matrix type can also be extended to other popular high-dimensional testing problems. Except for the theoretical results established for each random matrix type, various simulation studies are also provided in order to support these conclusions and to show the effectiveness of the proposed statistics. ​Doctor of Philosophy (SPMS) 2016-09-05T06:00:26Z 2016-09-05T06:00:26Z 2016 Thesis http://hdl.handle.net/10356/69019 en 162 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Science
spellingShingle DRNTU::Science
Han, Xiao
The largest eigenvalue of large random matrices and its application
description This thesis is concerned about the asymptotic behavior of the largest eigenvalues for some random matrices and their applications for high-dimensional data analysis. The first type of random matrix is the F-type matrix. More precisely, let $\bbA_p=\frac{\bbY\bbY^*}{m}$ and $\bbB_p=\frac{\bbX\bbX^*}{n}$ be two independent random matrices, where $\bbX=(X_{ij})_{p \times n}$, $\bbY=(Y_{ij})_{p \times m}$ and all entries are real (or complex) independent random variables with $\mathbf{E}X_{ij}=\mathbf{E}Y_{ij}=0$, $\mathbf{E}|X_{ij}|^2=\mathbf{E}|Y_{ij}|^2=1$. Denote the largest root of the determinantal equation $\det(\lambda \bbA_p-\bbB_p)=0$ by $\lambda_{1}$, which can be considered as a general version of the largest eigenvalue of the F matrix. We establish the Tracy-Widom Law for $\lambda_{1}$ under some mild conditions when both $\frac{p}{m}$ and $\frac{p}{n}$ tend to some positive constants as $p\rightarrow\infty$. More applications are given based on this limiting distribution of $\lambda_1$. The second type of random matrix is the sample covariance-type matrix. This type of random matrix is proposed to deal with the high-dimensional change point detection problem. By modifying the classic sample covariance matrix and then developing the corresponding asymptotic behavior of its largest eigenvalue, without any estimators, this thesis suggests an optimization approach that can figure out both the unknown number of change points and multiple change point positions simultaneously. Moreover, the largest eigenvalue of this matrix type can also be extended to other popular high-dimensional testing problems. Except for the theoretical results established for each random matrix type, various simulation studies are also provided in order to support these conclusions and to show the effectiveness of the proposed statistics.
author2 Pan Guangming
author_facet Pan Guangming
Han, Xiao
format Theses and Dissertations
author Han, Xiao
author_sort Han, Xiao
title The largest eigenvalue of large random matrices and its application
title_short The largest eigenvalue of large random matrices and its application
title_full The largest eigenvalue of large random matrices and its application
title_fullStr The largest eigenvalue of large random matrices and its application
title_full_unstemmed The largest eigenvalue of large random matrices and its application
title_sort largest eigenvalue of large random matrices and its application
publishDate 2016
url http://hdl.handle.net/10356/69019
_version_ 1759858006621683712