Active control of wakes and vortex-induced vibration of a circular cylinder at Re = 100

For years appropriate control methods have been actively sought to mitigate vortex-induced vibration (VIV) through either altering the shedding frequency or completely eliminating the vortex shedding. Among these methods, synthetic jets (SJs), as a promising active-flow-control means, are a good can...

Full description

Saved in:
Bibliographic Details
Main Author: Wang, Chenglei
Other Authors: Duan Fei
Format: Theses and Dissertations
Language:English
Published: 2016
Subjects:
Online Access:http://hdl.handle.net/10356/69034
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-69034
record_format dspace
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Aeronautical engineering::Aerodynamics
spellingShingle DRNTU::Engineering::Aeronautical engineering::Aerodynamics
Wang, Chenglei
Active control of wakes and vortex-induced vibration of a circular cylinder at Re = 100
description For years appropriate control methods have been actively sought to mitigate vortex-induced vibration (VIV) through either altering the shedding frequency or completely eliminating the vortex shedding. Among these methods, synthetic jets (SJs), as a promising active-flow-control means, are a good candidate for the control. As zero net-mass-flux jets, SJs have been widely applied in flow separation control and drag reduction for bluff bodies. However, their implementation for VIV control is rare and still remains not fully understood. This research aims to explore the control of asymmetric vortex shedding and the resulting VIV of bluff bodies using SJs and one of their variants, with the focus being placed on the change of wake dynamics, aerodynamic forces, and motions of a circular cylinder due to the control at a specific low Reynolds number of 100. To facilitate this study, a lattice Boltzmann method (LBM) based framework is established for fluid-structure interaction (FSI) simulations. In this framework, the multi-block scheme and an improved overlap-mesh approach are adopted to balance the computational accuracy and efficiency, the interpolated half-way bounce-back scheme is incorporated to deal with the curved body surfaces, and the corrected momentum exchange method is employed for accurate evaluation of aerodynamic forces experienced by bodies. In addition, the fly-by-wire vortex tracking method and dynamic mode decomposition (DMD) method are integrated in this framework. Three fundamental problems are investigated. First, the capability of a pair of in-phase SJs in suppressing the shedding of asymmetric vortices is studied systematically at different momentum coefficients, frequencies, and actuating locations, where the SJ excitation frequency of interest is roughly above five times the natural vortex shedding frequency and the lock-on phenomenon does not occur. The wakes, lift and one-dimensional VIV of the cylinder are examined in detail. It is confirmed that the in-phase SJ pair are able to completely suppress the asymmetric wake and the resulting VIV of the cylinder at certain SJ parameter combinations. Meanwhile it also reveals that the asymmetric wake suppression is usually accompanied by an increase of drag. To address this issue, the second study is targeted at suppressing two-dimensional VIV of the cylinder. A variant of the SJ concept, i.e. the windward suction combined with leeward blowing (WSLB), is implemented. The WSLB actuator consists of four continuous jets, two in suction at the windward of the cylinder and two in blowing at the leeward. The control effect of this new concept, with both open-loop and closed-loop schemes, is investigated in detail. Third, the effects of phase difference and excitation frequency of a pair of SJs on the wake and resulting aerodynamic forces are studied, where the SJ excitation frequency of interest is roughly below five times the natural vortex shedding frequency. Four different lock-on regimes are identified, i.e., the primary, secondary, tertiary and subharmonic lock-on. The corresponding wake structures and force characteristics are discussed. In addition, the effective SJ arrangement for minimizing the standard deviation of lift and drag oscillation is obtained. Through this research, a better understanding on the use of SJs for the control of asymmetric vortex shedding and VIV of bluff bodies is achieved. Although this research only focuses at a relatively low Reynolds number, it provides useful information for future extension to the flows of higher Reynolds numbers.
author2 Duan Fei
author_facet Duan Fei
Wang, Chenglei
format Theses and Dissertations
author Wang, Chenglei
author_sort Wang, Chenglei
title Active control of wakes and vortex-induced vibration of a circular cylinder at Re = 100
title_short Active control of wakes and vortex-induced vibration of a circular cylinder at Re = 100
title_full Active control of wakes and vortex-induced vibration of a circular cylinder at Re = 100
title_fullStr Active control of wakes and vortex-induced vibration of a circular cylinder at Re = 100
title_full_unstemmed Active control of wakes and vortex-induced vibration of a circular cylinder at Re = 100
title_sort active control of wakes and vortex-induced vibration of a circular cylinder at re = 100
publishDate 2016
url http://hdl.handle.net/10356/69034
_version_ 1761781980400189440
spelling sg-ntu-dr.10356-690342023-03-11T17:32:46Z Active control of wakes and vortex-induced vibration of a circular cylinder at Re = 100 Wang, Chenglei Duan Fei School of Mechanical and Aerospace Engineering DRNTU::Engineering::Aeronautical engineering::Aerodynamics For years appropriate control methods have been actively sought to mitigate vortex-induced vibration (VIV) through either altering the shedding frequency or completely eliminating the vortex shedding. Among these methods, synthetic jets (SJs), as a promising active-flow-control means, are a good candidate for the control. As zero net-mass-flux jets, SJs have been widely applied in flow separation control and drag reduction for bluff bodies. However, their implementation for VIV control is rare and still remains not fully understood. This research aims to explore the control of asymmetric vortex shedding and the resulting VIV of bluff bodies using SJs and one of their variants, with the focus being placed on the change of wake dynamics, aerodynamic forces, and motions of a circular cylinder due to the control at a specific low Reynolds number of 100. To facilitate this study, a lattice Boltzmann method (LBM) based framework is established for fluid-structure interaction (FSI) simulations. In this framework, the multi-block scheme and an improved overlap-mesh approach are adopted to balance the computational accuracy and efficiency, the interpolated half-way bounce-back scheme is incorporated to deal with the curved body surfaces, and the corrected momentum exchange method is employed for accurate evaluation of aerodynamic forces experienced by bodies. In addition, the fly-by-wire vortex tracking method and dynamic mode decomposition (DMD) method are integrated in this framework. Three fundamental problems are investigated. First, the capability of a pair of in-phase SJs in suppressing the shedding of asymmetric vortices is studied systematically at different momentum coefficients, frequencies, and actuating locations, where the SJ excitation frequency of interest is roughly above five times the natural vortex shedding frequency and the lock-on phenomenon does not occur. The wakes, lift and one-dimensional VIV of the cylinder are examined in detail. It is confirmed that the in-phase SJ pair are able to completely suppress the asymmetric wake and the resulting VIV of the cylinder at certain SJ parameter combinations. Meanwhile it also reveals that the asymmetric wake suppression is usually accompanied by an increase of drag. To address this issue, the second study is targeted at suppressing two-dimensional VIV of the cylinder. A variant of the SJ concept, i.e. the windward suction combined with leeward blowing (WSLB), is implemented. The WSLB actuator consists of four continuous jets, two in suction at the windward of the cylinder and two in blowing at the leeward. The control effect of this new concept, with both open-loop and closed-loop schemes, is investigated in detail. Third, the effects of phase difference and excitation frequency of a pair of SJs on the wake and resulting aerodynamic forces are studied, where the SJ excitation frequency of interest is roughly below five times the natural vortex shedding frequency. Four different lock-on regimes are identified, i.e., the primary, secondary, tertiary and subharmonic lock-on. The corresponding wake structures and force characteristics are discussed. In addition, the effective SJ arrangement for minimizing the standard deviation of lift and drag oscillation is obtained. Through this research, a better understanding on the use of SJs for the control of asymmetric vortex shedding and VIV of bluff bodies is achieved. Although this research only focuses at a relatively low Reynolds number, it provides useful information for future extension to the flows of higher Reynolds numbers. Doctor of Philosophy (MAE) 2016-09-19T01:29:18Z 2016-09-19T01:29:18Z 2015 Thesis Wang, C. (2015). Active control of wakes and vortex-induced vibration of a circular cylinder at Re = 100. Doctoral thesis, Nanyang Technological University, Singapore. http://hdl.handle.net/10356/69034 en 210 p. application/pdf