A large-eddy simulation study on supersonic jets

A Large-Eddy Simulation (LES) investigation was performed with the aim of analysing flow behaviour in a supersonic jet nozzle. The experiment also sought to understand how the results from the software used in the project, ANSYS Fluent, fair in its ability to produce accurate and similar results per...

Full description

Saved in:
Bibliographic Details
Main Author: Toh, Joel Hang Hwa
Other Authors: New Tze How Daniel
Format: Final Year Project
Language:English
Published: 2016
Subjects:
Online Access:http://hdl.handle.net/10356/69250
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-69250
record_format dspace
spelling sg-ntu-dr.10356-692502023-03-04T18:24:35Z A large-eddy simulation study on supersonic jets Toh, Joel Hang Hwa New Tze How Daniel School of Mechanical and Aerospace Engineering DRNTU::Engineering A Large-Eddy Simulation (LES) investigation was performed with the aim of analysing flow behaviour in a supersonic jet nozzle. The experiment also sought to understand how the results from the software used in the project, ANSYS Fluent, fair in its ability to produce accurate and similar results performed by previous experiments, done both numerically and experimentally. The initial phase of the project involved a two-dimensional (2D) mesh independence study, comparing the results of supersonic flow from a finer mesh and a coarser mesh with respect to a control mesh. The simulation was set to solve for a steady state solution with the Reynolds-Averaged Navier-Stokes (RANS) model. There were minor differences between the results of the three cases and results presented by the finer mesh have been proven to be more detailed and precise. In the second phase of the project, a 2D transient state simulation was conducted to obtain an approximate visualisation of how the supersonic flow of the nozzle was be expected to be. The simulation was also conducted using the RANS model. A comparison was made with experimental results from the Nanyang Technological University (NTU) research group to validate the flow. In the last phase of the project, a three-dimensional (3D) mesh of the supersonic nozzle was made to solve for a transient state solution. A 3D wedge of the nozzle was constructed to test if the parameters and resolution of the cells of the mesh was workable. The use of a wedge also saves on computational costs and time as opposed to using a full 3D mesh. After which, the full 3D mesh was made for LES. Though there were some complications met during the simulation, the results agrees with well with previous works and results from the NTU research group. In summary, LES from Fluent was effective in producing shock structures brought about by an under-expanded nozzle. Results also show similarities in flow characteristics from 2D RANS results. However, LES demands a high amount of computation, a very fine mesh, and time steps required a very small. A lot of time has to be accounted for in order to obtain a steady state flow. It seems to be more cost efficient to use data collected from the RANS model since differences in data quantities do not differ to a large extent. Bachelor of Engineering (Aerospace Engineering) 2016-12-08T01:12:12Z 2016-12-08T01:12:12Z 2016 Final Year Project (FYP) http://hdl.handle.net/10356/69250 en Nanyang Technological University 82 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering
spellingShingle DRNTU::Engineering
Toh, Joel Hang Hwa
A large-eddy simulation study on supersonic jets
description A Large-Eddy Simulation (LES) investigation was performed with the aim of analysing flow behaviour in a supersonic jet nozzle. The experiment also sought to understand how the results from the software used in the project, ANSYS Fluent, fair in its ability to produce accurate and similar results performed by previous experiments, done both numerically and experimentally. The initial phase of the project involved a two-dimensional (2D) mesh independence study, comparing the results of supersonic flow from a finer mesh and a coarser mesh with respect to a control mesh. The simulation was set to solve for a steady state solution with the Reynolds-Averaged Navier-Stokes (RANS) model. There were minor differences between the results of the three cases and results presented by the finer mesh have been proven to be more detailed and precise. In the second phase of the project, a 2D transient state simulation was conducted to obtain an approximate visualisation of how the supersonic flow of the nozzle was be expected to be. The simulation was also conducted using the RANS model. A comparison was made with experimental results from the Nanyang Technological University (NTU) research group to validate the flow. In the last phase of the project, a three-dimensional (3D) mesh of the supersonic nozzle was made to solve for a transient state solution. A 3D wedge of the nozzle was constructed to test if the parameters and resolution of the cells of the mesh was workable. The use of a wedge also saves on computational costs and time as opposed to using a full 3D mesh. After which, the full 3D mesh was made for LES. Though there were some complications met during the simulation, the results agrees with well with previous works and results from the NTU research group. In summary, LES from Fluent was effective in producing shock structures brought about by an under-expanded nozzle. Results also show similarities in flow characteristics from 2D RANS results. However, LES demands a high amount of computation, a very fine mesh, and time steps required a very small. A lot of time has to be accounted for in order to obtain a steady state flow. It seems to be more cost efficient to use data collected from the RANS model since differences in data quantities do not differ to a large extent.
author2 New Tze How Daniel
author_facet New Tze How Daniel
Toh, Joel Hang Hwa
format Final Year Project
author Toh, Joel Hang Hwa
author_sort Toh, Joel Hang Hwa
title A large-eddy simulation study on supersonic jets
title_short A large-eddy simulation study on supersonic jets
title_full A large-eddy simulation study on supersonic jets
title_fullStr A large-eddy simulation study on supersonic jets
title_full_unstemmed A large-eddy simulation study on supersonic jets
title_sort large-eddy simulation study on supersonic jets
publishDate 2016
url http://hdl.handle.net/10356/69250
_version_ 1759855190167519232