Exploring Π-conjugated carbon nanomaterials for biomedical applications

Nanomaterials are at the forefront of the rapidly changing landscape in nano medicine and nanobiotechnology. Their unique size and surface-dependent properties (e.g. physicochemical, optical etc) make nanomaterials engineered from π-conjugated carbons such as semiconducting polymers and graphene sui...

Full description

Saved in:
Bibliographic Details
Main Author: Prasad, Kenath Priyanka
Other Authors: Chen Peng
Format: Theses and Dissertations
Language:English
Published: 2016
Subjects:
Online Access:https://hdl.handle.net/10356/69314
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-69314
record_format dspace
spelling sg-ntu-dr.10356-693142023-03-03T16:06:10Z Exploring Π-conjugated carbon nanomaterials for biomedical applications Prasad, Kenath Priyanka Chen Peng School of Chemical and Biomedical Engineering DRNTU::Engineering::Bioengineering Nanomaterials are at the forefront of the rapidly changing landscape in nano medicine and nanobiotechnology. Their unique size and surface-dependent properties (e.g. physicochemical, optical etc) make nanomaterials engineered from π-conjugated carbons such as semiconducting polymers and graphene suitable for a variety of biomedical applications. At present, the research on π-conjugated nanocarbons is in its infancy and thus, many challenges and opportunities exist for the generation of customized nanomaterials for biomedical applications. This thesis work aims to develop π-conjugated carbon-based nanomaterials with tailored properties for applications in cellular imaging, therapy and biodevices. Firstly, an electropolymerization based facile strategy was conceived to synthesize polymer quantum dots from one-dimensional semiconducting polymers. Using this strategy polymer dots with small sizes, high brightness, tunable photoluminescence, excellent photostability and superb biocompatibility were derived from two non-fluorescent semiconducting polymers poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(2,2’-bithiophene). The small sized, fluorescent PEDOT-Pdots showed good quantum yields (~13%) and were utilized as bioimaging probes and optical sensors for toxic mercury ions with good detection limits. Subsequently, the developed synthesis route was modified and used to tailor polymer dots with improved brightness and small sizes. The synthesized pTh-Pdots demonstrated unique solvatochromism behaviour and were utilized to label and differentiate early endosomes and lysosomes to track the endocytic pathway. In addition to lighting up biological pathways, identifying new antibacterial alternatives is increasingly becoming more urgent. The aqueous suspensions of the amphiphilic pTh-Pdots were found to be potent synthetic antibacterial alternatives, thereby demonstrating for the first time a new area of application for the versatile polymer dots. Finally, the synergistic effect between two π-conjugated carbon allotropes was used to enhance the performance of a bio-power device. Enzymatic biofuel based cells can be considered as alternative power generation biodevices with a long-term goal as bio-renewable power sources for implantable medical devices. 1D single walled carbon nanotubes (SWCNT) were composited with freestanding graphene (a three-dimensional architecture of 2D graphene) to fabricate bioelectrodes for a glucose/oxygen powered enzymatic biofuel cell (EBFC). The 3D graphene-SWCNT-enzyme based bio-electrodes fabricated from two conjugated carbon allotropes (graphene and carbon nanotubes) exhibited one of the highest performances till date. With its extensive electrochemically active surface areas, high enzyme loading, efficient, and superb electron transfer, the EBFC performance approached open circuit voltages of 1.2 V and power densities of 2.27 ± 0.11 mW cm-2. DOCTOR OF PHILOSOPHY (SCBE) 2016-12-13T02:54:03Z 2016-12-13T02:54:03Z 2016 Thesis Prasad, K. P. (2016). Exploring Π-conjugated carbon nanomaterials for biomedical applications. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/69314 10.32657/10356/69314 en 155 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Bioengineering
spellingShingle DRNTU::Engineering::Bioengineering
Prasad, Kenath Priyanka
Exploring Π-conjugated carbon nanomaterials for biomedical applications
description Nanomaterials are at the forefront of the rapidly changing landscape in nano medicine and nanobiotechnology. Their unique size and surface-dependent properties (e.g. physicochemical, optical etc) make nanomaterials engineered from π-conjugated carbons such as semiconducting polymers and graphene suitable for a variety of biomedical applications. At present, the research on π-conjugated nanocarbons is in its infancy and thus, many challenges and opportunities exist for the generation of customized nanomaterials for biomedical applications. This thesis work aims to develop π-conjugated carbon-based nanomaterials with tailored properties for applications in cellular imaging, therapy and biodevices. Firstly, an electropolymerization based facile strategy was conceived to synthesize polymer quantum dots from one-dimensional semiconducting polymers. Using this strategy polymer dots with small sizes, high brightness, tunable photoluminescence, excellent photostability and superb biocompatibility were derived from two non-fluorescent semiconducting polymers poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(2,2’-bithiophene). The small sized, fluorescent PEDOT-Pdots showed good quantum yields (~13%) and were utilized as bioimaging probes and optical sensors for toxic mercury ions with good detection limits. Subsequently, the developed synthesis route was modified and used to tailor polymer dots with improved brightness and small sizes. The synthesized pTh-Pdots demonstrated unique solvatochromism behaviour and were utilized to label and differentiate early endosomes and lysosomes to track the endocytic pathway. In addition to lighting up biological pathways, identifying new antibacterial alternatives is increasingly becoming more urgent. The aqueous suspensions of the amphiphilic pTh-Pdots were found to be potent synthetic antibacterial alternatives, thereby demonstrating for the first time a new area of application for the versatile polymer dots. Finally, the synergistic effect between two π-conjugated carbon allotropes was used to enhance the performance of a bio-power device. Enzymatic biofuel based cells can be considered as alternative power generation biodevices with a long-term goal as bio-renewable power sources for implantable medical devices. 1D single walled carbon nanotubes (SWCNT) were composited with freestanding graphene (a three-dimensional architecture of 2D graphene) to fabricate bioelectrodes for a glucose/oxygen powered enzymatic biofuel cell (EBFC). The 3D graphene-SWCNT-enzyme based bio-electrodes fabricated from two conjugated carbon allotropes (graphene and carbon nanotubes) exhibited one of the highest performances till date. With its extensive electrochemically active surface areas, high enzyme loading, efficient, and superb electron transfer, the EBFC performance approached open circuit voltages of 1.2 V and power densities of 2.27 ± 0.11 mW cm-2.
author2 Chen Peng
author_facet Chen Peng
Prasad, Kenath Priyanka
format Theses and Dissertations
author Prasad, Kenath Priyanka
author_sort Prasad, Kenath Priyanka
title Exploring Π-conjugated carbon nanomaterials for biomedical applications
title_short Exploring Π-conjugated carbon nanomaterials for biomedical applications
title_full Exploring Π-conjugated carbon nanomaterials for biomedical applications
title_fullStr Exploring Π-conjugated carbon nanomaterials for biomedical applications
title_full_unstemmed Exploring Π-conjugated carbon nanomaterials for biomedical applications
title_sort exploring π-conjugated carbon nanomaterials for biomedical applications
publishDate 2016
url https://hdl.handle.net/10356/69314
_version_ 1759857132370395136