Multiscale maxwell equations : homogenization and high dimensional finite element method

Solving multiscale partial differential equations is exceedingly complex. Traditional methods have to use a mesh size of at most the order of the smallest scale to produce accurate approximations. The thesis contributes rigorous study of mathematical homogenization of multiscale Maxwell equations. I...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Chu, Van Tiep
مؤلفون آخرون: Hoang Viet Ha
التنسيق: Theses and Dissertations
اللغة:English
منشور في: 2016
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/69421
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Solving multiscale partial differential equations is exceedingly complex. Traditional methods have to use a mesh size of at most the order of the smallest scale to produce accurate approximations. The thesis contributes rigorous study of mathematical homogenization of multiscale Maxwell equations. It includes new homogenization errors when the solution to the homogenized equation possesses low regularity. The thesis develops the sparse tensor finite element approach, using edge finite elements, for solving the high dimensional multiscale homogenized Maxwell equations. It obtains the solution to the homogenized equation, which describes the solution to the multiscale equation macroscopically, and the scale interacting (corrector) terms, which encode the microscopic information, at the same time. The method achieves essentially optimal complexity. From the finite element solutions, we construct a numerical corrector for the solution of the multiscale problem, with an explicit error in terms of the homogenization error and the finite element error in the two-scale cases.