Multiscale maxwell equations : homogenization and high dimensional finite element method

Solving multiscale partial differential equations is exceedingly complex. Traditional methods have to use a mesh size of at most the order of the smallest scale to produce accurate approximations. The thesis contributes rigorous study of mathematical homogenization of multiscale Maxwell equations. I...

全面介紹

Saved in:
書目詳細資料
主要作者: Chu, Van Tiep
其他作者: Hoang Viet Ha
格式: Theses and Dissertations
語言:English
出版: 2016
主題:
在線閱讀:https://hdl.handle.net/10356/69421
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Solving multiscale partial differential equations is exceedingly complex. Traditional methods have to use a mesh size of at most the order of the smallest scale to produce accurate approximations. The thesis contributes rigorous study of mathematical homogenization of multiscale Maxwell equations. It includes new homogenization errors when the solution to the homogenized equation possesses low regularity. The thesis develops the sparse tensor finite element approach, using edge finite elements, for solving the high dimensional multiscale homogenized Maxwell equations. It obtains the solution to the homogenized equation, which describes the solution to the multiscale equation macroscopically, and the scale interacting (corrector) terms, which encode the microscopic information, at the same time. The method achieves essentially optimal complexity. From the finite element solutions, we construct a numerical corrector for the solution of the multiscale problem, with an explicit error in terms of the homogenization error and the finite element error in the two-scale cases.