Mechanics precision grinding brittle materials
This project aims at gaining a better understanding of the mechanics of precision grinding of brittle materials. Indentation and scribing experiments on brittle materials were carried out to study crack initiation and propagation, brittle-ductile transition and material removal mechanism. The result...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
مؤلفون آخرون: | |
التنسيق: | Research Report |
منشور في: |
2008
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://hdl.handle.net/10356/6987 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | This project aims at gaining a better understanding of the mechanics of precision grinding of brittle materials. Indentation and scribing experiments on brittle materials were carried out to study crack initiation and propagation, brittle-ductile transition and material removal mechanism. The results of indentation and scribing tests show that brittle materials can be machined in a ductile manner when penetration depth is less than a critical value. Single point diamond turning of brittle materials, both as an alternative machining technique in its own right and as a model for certain parameters involved in grinding, was performed. Experimental results show that the properties of the workpiece material have a considerable influence on the critical depth of cut. Mirror surfaces are more prone to be generated on single crystal silicon than glasses. A smooth surface with a roughness in nano-scale was produced on silicon by properly controlling machining parameters. Tool wear mechanism in diamond cutting of glasses was investigated. |
---|