Boundary element analysis of fibre-bridging in fibre-metal laminates

To analyse fibre-bridging in cracked fibre-metal laminates, a numerical study using the Boundary Element Method was done. In this study, the material used is Glass-Reinforced Aluminium Laminate (GLARE). The study was conducted using the BEM, with varying parameters, to obtain the fibre-bridging stre...

全面介紹

Saved in:
書目詳細資料
主要作者: Gan, Rui Yun
其他作者: Ang Hock Eng
格式: Final Year Project
語言:English
出版: 2017
主題:
在線閱讀:http://hdl.handle.net/10356/70897
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:To analyse fibre-bridging in cracked fibre-metal laminates, a numerical study using the Boundary Element Method was done. In this study, the material used is Glass-Reinforced Aluminium Laminate (GLARE). The study was conducted using the BEM, with varying parameters, to obtain the fibre-bridging stress and normalised crack-tip stress intensity factors (SIF). The parameters varied were crack configurations, crack size ratio, extent of fibre-bridging, power law index and delamination shape. The computational results were analysed and the impact of the variation of each parameter on the fibre-bridging stress and crack-tip stress intensity factor (SIF) was observed. Generally, it was noticed that both fibre-bridging stresses and normalised crack-tip SIF increase with the increase in crack size and power law index, and the decrease in the extent of fibre-bridging. The values of fibre-bridging stresses are generally lower in circular delamination, in comparison to elliptical delamination, while the values of normalised crack-tip SIF are generally lower in elliptical delamination instead. This study allowed a better understanding of the fibre-bridging mechanism in fibre-metal laminates, particularly GLARE, qualitatively without going through the more sophisticated Finite Element Method.