The effect of small molecule inhibitors on ciliogenesis

Cilia are complex hair-like sensory organelles that extend from the membrane of almost all cell types in humans and defects in cilia have been found to be responsible for a myriad of human diseases and cancers. There are several key players involved in the process of ciliogenesis and one of which is...

Full description

Saved in:
Bibliographic Details
Main Author: Chan, Lovynn Wan Ting
Other Authors: Lu Lei
Format: Final Year Project
Language:English
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/10356/71079
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-71079
record_format dspace
spelling sg-ntu-dr.10356-710792023-02-28T18:07:13Z The effect of small molecule inhibitors on ciliogenesis Chan, Lovynn Wan Ting Lu Lei Madugula Viswanadh School of Biological Sciences DRNTU::Science Cilia are complex hair-like sensory organelles that extend from the membrane of almost all cell types in humans and defects in cilia have been found to be responsible for a myriad of human diseases and cancers. There are several key players involved in the process of ciliogenesis and one of which is the histone deacetylases (HDACs). Activation of HDACs causes ciliary resorption and induces cell proliferation. Small molecule inhibitors of HDACs, sodium butyrate and Trichostatin A, prove to potentially induce ciliogenesis and repress cell proliferation but few studies have been done to verify this finding. The purpose of this study is to identify the optimal concentration for drug treatment of sodium butyrate and Trichostatin A as well as their efficacy. With varying concentrations, sodium butyrate is able to induce ciliogenesis in up to 23% of RPE1 cells and 43% of BSC1 cells while Trichostatin A is proven to be able to induce ciliogenesis in up to 29% of RPE1 cells after 24 hour incubation. Varying concentrations of sodium butyrate and Trichostatin A have no significant effect on the length of cilia in both RPE1 and BSC1 cells. Both sodium butyrate and Trichostatin A present as dose-dependent anti-proliferative agents by targeting HDACs. Bachelor of Science in Biological Sciences 2017-05-15T04:10:23Z 2017-05-15T04:10:23Z 2017 Final Year Project (FYP) http://hdl.handle.net/10356/71079 en Nanyang Technological University 34 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Science
spellingShingle DRNTU::Science
Chan, Lovynn Wan Ting
The effect of small molecule inhibitors on ciliogenesis
description Cilia are complex hair-like sensory organelles that extend from the membrane of almost all cell types in humans and defects in cilia have been found to be responsible for a myriad of human diseases and cancers. There are several key players involved in the process of ciliogenesis and one of which is the histone deacetylases (HDACs). Activation of HDACs causes ciliary resorption and induces cell proliferation. Small molecule inhibitors of HDACs, sodium butyrate and Trichostatin A, prove to potentially induce ciliogenesis and repress cell proliferation but few studies have been done to verify this finding. The purpose of this study is to identify the optimal concentration for drug treatment of sodium butyrate and Trichostatin A as well as their efficacy. With varying concentrations, sodium butyrate is able to induce ciliogenesis in up to 23% of RPE1 cells and 43% of BSC1 cells while Trichostatin A is proven to be able to induce ciliogenesis in up to 29% of RPE1 cells after 24 hour incubation. Varying concentrations of sodium butyrate and Trichostatin A have no significant effect on the length of cilia in both RPE1 and BSC1 cells. Both sodium butyrate and Trichostatin A present as dose-dependent anti-proliferative agents by targeting HDACs.
author2 Lu Lei
author_facet Lu Lei
Chan, Lovynn Wan Ting
format Final Year Project
author Chan, Lovynn Wan Ting
author_sort Chan, Lovynn Wan Ting
title The effect of small molecule inhibitors on ciliogenesis
title_short The effect of small molecule inhibitors on ciliogenesis
title_full The effect of small molecule inhibitors on ciliogenesis
title_fullStr The effect of small molecule inhibitors on ciliogenesis
title_full_unstemmed The effect of small molecule inhibitors on ciliogenesis
title_sort effect of small molecule inhibitors on ciliogenesis
publishDate 2017
url http://hdl.handle.net/10356/71079
_version_ 1759855172440293376