Indentation of fibre-metal sandwich panels

This report discusses the static indentation response of fibre-metal honeycomb sandwich panels through the study of load-displacement curve, failure modes occurred as well as effects of facesheet composition and core thickness. 10cm x 10cm sandwich panels with four facesheet types and two core thick...

Full description

Saved in:
Bibliographic Details
Main Author: Lin, Zexin
Other Authors: Chai Gin Boay
Format: Final Year Project
Language:English
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/10356/71217
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:This report discusses the static indentation response of fibre-metal honeycomb sandwich panels through the study of load-displacement curve, failure modes occurred as well as effects of facesheet composition and core thickness. 10cm x 10cm sandwich panels with four facesheet types and two core thicknesses are designed and fabricated. The four types of facesheet have variation in Metal Volume Fraction (MVF) from 0 to 1 through combinations of aluminium sheet and Glass Fibre Reinforced Polymer (GFRP) prepreg. The two types of core thicknesses used in the project are 15mm and 25mm. Fabrication process of honeycomb composite sandwich panels from design, hand lay-up construction to autoclave curing is presented before experimental setup and procedure are introduced. Failure mode occurring sequences is then investigated by close examination of the indentation location of specimens at various stages of the indentation tests. In the next chapter, effects of facesheet MVF and core thickness are discussed from the experimental data. It is found that facesheet MVF mainly affect the peak loads and the energy absorption ability, A higher facesheet MVF generally leads to higher peak load and better energy absorption ability. It is also suggested that displacement required to reach second peak load and energy absorption ability are major factors dominated by core thickness. However, core thickness only improves mass specific energy for sandwich panels with very low MVF.