Harnessing of indoor light energy
As fossil fuels are depleting over time and they cannot be easily replaced, renewable energy is of popular demand as they do not generate as much carbon footprints and they are renewable. One of the fastest growing renewable energies is the solar or photovoltaic (PV) energy. On top of that, Singapor...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/71236 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-71236 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-712362023-07-07T16:09:53Z Harnessing of indoor light energy Ong, Bao Xiong Rusli School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering As fossil fuels are depleting over time and they cannot be easily replaced, renewable energy is of popular demand as they do not generate as much carbon footprints and they are renewable. One of the fastest growing renewable energies is the solar or photovoltaic (PV) energy. On top of that, Singapore is also heading towards the Smart Nation concept, where its people are enabled by technology to lead meaningful and fulfilled lives. This is done through harnessing the power of renewable energies, info-communication technologies, networks and data. The ideology of machines talking to machines via wireless info-communication technologies is coined as Internet-of-Things (IoT). Integrating PV technologies together with IoT systems enables the entire system to be autonomous and self-sustaining. In this report, the basic working principles of a PV cell will be studied and used as a renewable energy source to provide electrical power to the autonomous IoT system. A supercapacitor bank is then deployed as an energy storage for the system and to understand how a supercapacitor bank work, the basic working principles of a capacitor will be studied. The load of the system is a conductivity sensor from Innovative Sensor Technology (IST) and this sensor will send conductivity and temperature readings to the Arduino/Genuino MKR1000 board to transmit these readings wirelessly to the cloud for data storage. The Arduino/Genuino MKR1000 will be the main brain of the system as it reads data from the sensor and transmit it to the cloud. All the above will be studied, calculated and simulated before building the actual system. Bachelor of Engineering 2017-05-15T08:16:55Z 2017-05-15T08:16:55Z 2017 Final Year Project (FYP) http://hdl.handle.net/10356/71236 en Nanyang Technological University 85 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Electrical and electronic engineering |
spellingShingle |
DRNTU::Engineering::Electrical and electronic engineering Ong, Bao Xiong Harnessing of indoor light energy |
description |
As fossil fuels are depleting over time and they cannot be easily replaced, renewable energy is of popular demand as they do not generate as much carbon footprints and they are renewable. One of the fastest growing renewable energies is the solar or photovoltaic (PV) energy. On top of that, Singapore is also heading towards the Smart Nation concept, where its people are enabled by technology to lead meaningful and fulfilled lives. This is done through harnessing the power of renewable energies, info-communication technologies, networks and data. The ideology of machines talking to machines via wireless info-communication technologies is coined as Internet-of-Things (IoT). Integrating PV technologies together with IoT systems enables the entire system to be autonomous and self-sustaining. In this report, the basic working principles of a PV cell will be studied and used as a renewable energy source to provide electrical power to the autonomous IoT system. A supercapacitor bank is then deployed as an energy storage for the system and to understand how a supercapacitor bank work, the basic working principles of a capacitor will be studied. The load of the system is a conductivity sensor from Innovative Sensor Technology (IST) and this sensor will send conductivity and temperature readings to the Arduino/Genuino MKR1000 board to transmit these readings wirelessly to the cloud for data storage. The Arduino/Genuino MKR1000 will be the main brain of the system as it reads data from the sensor and transmit it to the cloud. All the above will be studied, calculated and simulated before building the actual system. |
author2 |
Rusli |
author_facet |
Rusli Ong, Bao Xiong |
format |
Final Year Project |
author |
Ong, Bao Xiong |
author_sort |
Ong, Bao Xiong |
title |
Harnessing of indoor light energy |
title_short |
Harnessing of indoor light energy |
title_full |
Harnessing of indoor light energy |
title_fullStr |
Harnessing of indoor light energy |
title_full_unstemmed |
Harnessing of indoor light energy |
title_sort |
harnessing of indoor light energy |
publishDate |
2017 |
url |
http://hdl.handle.net/10356/71236 |
_version_ |
1772827686108921856 |