Achieving higher classification accuracy with ensemble of trees
Classification is a process where a classifier predicts a class label to an object using the set of inputs. One simple method to solve classification problems is a decision tree, a classifier which can be easily interpreted with a graph and yet produces potentially high accuracies. However, there is...
Saved in:
主要作者: | Cheng, Wen Xin |
---|---|
其他作者: | Ponnuthurai Nagaratnam Suganthan |
格式: | Final Year Project |
語言: | English |
出版: |
2017
|
主題: | |
在線閱讀: | http://hdl.handle.net/10356/71661 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
A novel ensemble algorithm for tumor classification
由: Sun, Zhan-Li, et al.
出版: (2013) -
An ensemble of decision trees with random vector functional link networks for multi-class classification
由: Katuwal, Rakesh, et al.
出版: (2020) -
Oblique decision tree ensemble via twin bounded SVM
由: Ganaie, M. A., et al.
出版: (2022) -
Land cover classification based on SAR and optical images using ensemble machine learning
由: Tian, Gege
出版: (2022) -
Development of an ensemble of extreme learning machines for 3D medical object segmentation and classification
由: Tan, Zu Ming.
出版: (2012)