Design microstructured fiber for mid-IR third harmonic generation

Photonic crystal fiber (PCF) is a new type of optical fiber in a periodic arrangement of air holes, the diameter of air hole reach microns level. The complex structural characteristic brought it many advantages, such as no cut-off single-mode, high nonlinearity, controllable dispersion and so on.T...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Zhang, Weiling
مؤلفون آخرون: Shum Ping
التنسيق: Final Year Project
اللغة:English
منشور في: 2017
الموضوعات:
الوصول للمادة أونلاين:http://hdl.handle.net/10356/72224
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Photonic crystal fiber (PCF) is a new type of optical fiber in a periodic arrangement of air holes, the diameter of air hole reach microns level. The complex structural characteristic brought it many advantages, such as no cut-off single-mode, high nonlinearity, controllable dispersion and so on.The third harmonic generation is a promising method of generating a laser at a wavelength where there is no suitable active laser material. Due to the advantages of small effective area and long interaction length, optical fiber is an attractive form of nonlinear medium for potentially achieving high conversion efficiency. To leverage on the huge progress achieved in optical fiber communication, recently more and more strong interest has emerged in the literature for application-specific specialty fiber designs. Microstructured fibers often referred as photonic crystal fibers form a versatile design platform for such fibers. In this project, As2Se3 is used as fiber material to verify the nonlinear parametric downconversion from 3533nm to 10600nm regions. Based on the theoretical research and software COMSOL and Matlab simulation, three kinds of fiber structures have been designed and analyzed that fulfill the phase matching conditions. Lastly, the suggestions for improving TPG efficiency were offered at the end of this report.