An experimental study on plunging cylinders

This paper is an experimental study on plunging cylinders. Four nosecone shapes, cylindrical, conical, parabolic and power series 0.5 with a variation of material type, aluminium and steel were studied. There are two parts to this experiment, high-speed imaging and particle image velocimetry. High-s...

Full description

Saved in:
Bibliographic Details
Main Author: Pang, He Li
Other Authors: New Tze How Daniel
Format: Final Year Project
Language:English
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/10356/72255
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-72255
record_format dspace
spelling sg-ntu-dr.10356-722552023-03-04T18:37:59Z An experimental study on plunging cylinders Pang, He Li New Tze How Daniel School of Mechanical and Aerospace Engineering DRNTU::Engineering::Aeronautical engineering::Aerodynamics This paper is an experimental study on plunging cylinders. Four nosecone shapes, cylindrical, conical, parabolic and power series 0.5 with a variation of material type, aluminium and steel were studied. There are two parts to this experiment, high-speed imaging and particle image velocimetry. High-speed camera captured the projectiles traversing from air to water. The images were calibrated, tracked, and the extracted data were filtered and analysed. Particle image velocimetry were utilized for flow visualization. Comparisons between nosecone shape and the projectile mass will be discussed the output data of velocity, impact acceleration, coefficient of drag, cavitation growth and flow visualization. It was found that cylindrical projectile has the biggest change in acceleration when traversing between air and water, resulting in the biggest drag coefficient. From PIV data, conical projectile displaces water at the smallest magnitude. The parabolic and power series projectiles have the smallest impact forces when the projectile mass is increased. Increase in projectile mass resulted in a decrease of coefficient of drag. Cavitation growth influences the performance of the projectile, projectile with surface seal decelerates rapidly, whereas a projectile with deep seal tends to accelerate continuously. Finally, increase in flow activity around a projectile reduces the acceleration performance i.e. causes energy loss resulting in deceleration. Suggestions for improvement and future research were also provided. Bachelor of Engineering (Aerospace Engineering) 2017-05-31T04:45:02Z 2017-05-31T04:45:02Z 2017 Final Year Project (FYP) http://hdl.handle.net/10356/72255 en Nanyang Technological University 66 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Aeronautical engineering::Aerodynamics
spellingShingle DRNTU::Engineering::Aeronautical engineering::Aerodynamics
Pang, He Li
An experimental study on plunging cylinders
description This paper is an experimental study on plunging cylinders. Four nosecone shapes, cylindrical, conical, parabolic and power series 0.5 with a variation of material type, aluminium and steel were studied. There are two parts to this experiment, high-speed imaging and particle image velocimetry. High-speed camera captured the projectiles traversing from air to water. The images were calibrated, tracked, and the extracted data were filtered and analysed. Particle image velocimetry were utilized for flow visualization. Comparisons between nosecone shape and the projectile mass will be discussed the output data of velocity, impact acceleration, coefficient of drag, cavitation growth and flow visualization. It was found that cylindrical projectile has the biggest change in acceleration when traversing between air and water, resulting in the biggest drag coefficient. From PIV data, conical projectile displaces water at the smallest magnitude. The parabolic and power series projectiles have the smallest impact forces when the projectile mass is increased. Increase in projectile mass resulted in a decrease of coefficient of drag. Cavitation growth influences the performance of the projectile, projectile with surface seal decelerates rapidly, whereas a projectile with deep seal tends to accelerate continuously. Finally, increase in flow activity around a projectile reduces the acceleration performance i.e. causes energy loss resulting in deceleration. Suggestions for improvement and future research were also provided.
author2 New Tze How Daniel
author_facet New Tze How Daniel
Pang, He Li
format Final Year Project
author Pang, He Li
author_sort Pang, He Li
title An experimental study on plunging cylinders
title_short An experimental study on plunging cylinders
title_full An experimental study on plunging cylinders
title_fullStr An experimental study on plunging cylinders
title_full_unstemmed An experimental study on plunging cylinders
title_sort experimental study on plunging cylinders
publishDate 2017
url http://hdl.handle.net/10356/72255
_version_ 1759857529697861632