Advanced electrical machine design for azimuthing electrical podded propulsor

At present, energy efficiency, operational reliability and cost savings are some of the most important factors regarding electrical systems in marine business industry. Regulations such as the International Marine Organization (IMO) Tier III impose a tougher limit to global warming emissions than be...

Full description

Saved in:
Bibliographic Details
Main Author: Chu, Kin Hey
Other Authors: Josep Pou
Format: Theses and Dissertations
Language:English
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/10356/72352
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-72352
record_format dspace
spelling sg-ntu-dr.10356-723522023-07-04T17:29:07Z Advanced electrical machine design for azimuthing electrical podded propulsor Chu, Kin Hey Josep Pou Tseng King Jet School of Electrical and Electronic Engineering Rolls-Royce Singapore Pte. Ltd. DRNTU::Engineering::Electrical and electronic engineering At present, energy efficiency, operational reliability and cost savings are some of the most important factors regarding electrical systems in marine business industry. Regulations such as the International Marine Organization (IMO) Tier III impose a tougher limit to global warming emissions than before. The permanent magnet synchronous machines (PMSMs) are great contenders for electrical machine propulsion. They are highly efficient, lightweight and compact. However, due to the high cost of rare earth elements (REE), PMSM is substantially more costly than most machines of other topologies. Unfortunately, no readily available substitute exists for most REE. In the doctoral thesis, a study of hybrid excitation synchronous machine (HESM) is presented. HESMs are synchronous machines, where the total rotor field excitation is produced by the simultaneous action of electrical and permanent magnet (PM) excitation. This study contributes a more efficient alternative for the brushless excited synchronous machine (BLSM) which meets all the requirements for azimuthing podded propulsion. A literature review was conducted to understand the trends in the podded propulsor market and electrical machines topologies suitable for marine propulsion. The HESM was found to be a potential alternative to the BLSM. An overview of published HESM designs is given from a standpoint of complexity of design, energy efficiency, cost, manufacturability, etc. The feasibility study narrowed down the possible designs of HESM for traction/propulsion applications. Based on analytical methods, a program was written for the preliminary calculations of the machine dimensions and its main parameters. The design is refined using Ansys-RMxprt software followed by finite element method (FEM) software, Ansys-Maxwell. Throughout the stages, the machine designs were optimized. Electromagnetic simulations are applied to the final machine designs to obtain design parameters, electromagnetic forces and machine characteristics. Thermal analyses and economy studies are also performed. A benchmark 5MW BLSM is developed to replicate the existing electric machine used in the application.Two variants of HESMs are developed, one of them with additional armature reaction compensation capability. The performances of the HESMs were found to be superior to that of the BLSM. An experiment was carried out to verify the armature reaction compensation technique. Two commercially available 12.5kVA, 4-pole wound field synchronous machines were used. One of the machines is modified to incorporate magnets on one edge of each pole. The other machine is left unmodified to act as a benchmark for the experiment. The experimental results along with FEM simulations show improvements to the machine performance brought about by the proposed technique. Efficiency of electrical machines tends to increase with their sizes. Therefore, there is a power rating limit to which the benefit of higher efficiency can be achieved by this technology. However, when used in low power applications as in this case, the increase in machine efficiency can be quite substantial. Limited by economy, this technology is most feasible for the azimuthing podded propulsor at power levels where the application of PMSM is too expensive and BLSM is not sufficiently energy efficient. Doctor of Philosophy (EEE) 2017-06-12T04:39:08Z 2017-06-12T04:39:08Z 2017 Thesis Chu, K. H. (2017). Advanced electrical machine design for azimuthing electrical podded propulsor. Doctoral thesis, Nanyang Technological University, Singapore. http://hdl.handle.net/10356/72352 10.32657/10356/72352 en 218 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Electrical and electronic engineering
spellingShingle DRNTU::Engineering::Electrical and electronic engineering
Chu, Kin Hey
Advanced electrical machine design for azimuthing electrical podded propulsor
description At present, energy efficiency, operational reliability and cost savings are some of the most important factors regarding electrical systems in marine business industry. Regulations such as the International Marine Organization (IMO) Tier III impose a tougher limit to global warming emissions than before. The permanent magnet synchronous machines (PMSMs) are great contenders for electrical machine propulsion. They are highly efficient, lightweight and compact. However, due to the high cost of rare earth elements (REE), PMSM is substantially more costly than most machines of other topologies. Unfortunately, no readily available substitute exists for most REE. In the doctoral thesis, a study of hybrid excitation synchronous machine (HESM) is presented. HESMs are synchronous machines, where the total rotor field excitation is produced by the simultaneous action of electrical and permanent magnet (PM) excitation. This study contributes a more efficient alternative for the brushless excited synchronous machine (BLSM) which meets all the requirements for azimuthing podded propulsion. A literature review was conducted to understand the trends in the podded propulsor market and electrical machines topologies suitable for marine propulsion. The HESM was found to be a potential alternative to the BLSM. An overview of published HESM designs is given from a standpoint of complexity of design, energy efficiency, cost, manufacturability, etc. The feasibility study narrowed down the possible designs of HESM for traction/propulsion applications. Based on analytical methods, a program was written for the preliminary calculations of the machine dimensions and its main parameters. The design is refined using Ansys-RMxprt software followed by finite element method (FEM) software, Ansys-Maxwell. Throughout the stages, the machine designs were optimized. Electromagnetic simulations are applied to the final machine designs to obtain design parameters, electromagnetic forces and machine characteristics. Thermal analyses and economy studies are also performed. A benchmark 5MW BLSM is developed to replicate the existing electric machine used in the application.Two variants of HESMs are developed, one of them with additional armature reaction compensation capability. The performances of the HESMs were found to be superior to that of the BLSM. An experiment was carried out to verify the armature reaction compensation technique. Two commercially available 12.5kVA, 4-pole wound field synchronous machines were used. One of the machines is modified to incorporate magnets on one edge of each pole. The other machine is left unmodified to act as a benchmark for the experiment. The experimental results along with FEM simulations show improvements to the machine performance brought about by the proposed technique. Efficiency of electrical machines tends to increase with their sizes. Therefore, there is a power rating limit to which the benefit of higher efficiency can be achieved by this technology. However, when used in low power applications as in this case, the increase in machine efficiency can be quite substantial. Limited by economy, this technology is most feasible for the azimuthing podded propulsor at power levels where the application of PMSM is too expensive and BLSM is not sufficiently energy efficient.
author2 Josep Pou
author_facet Josep Pou
Chu, Kin Hey
format Theses and Dissertations
author Chu, Kin Hey
author_sort Chu, Kin Hey
title Advanced electrical machine design for azimuthing electrical podded propulsor
title_short Advanced electrical machine design for azimuthing electrical podded propulsor
title_full Advanced electrical machine design for azimuthing electrical podded propulsor
title_fullStr Advanced electrical machine design for azimuthing electrical podded propulsor
title_full_unstemmed Advanced electrical machine design for azimuthing electrical podded propulsor
title_sort advanced electrical machine design for azimuthing electrical podded propulsor
publishDate 2017
url http://hdl.handle.net/10356/72352
_version_ 1772826108629090304