Graphene quantum dots (GQDS) and their derivatives for multifarious catalysis and environmental applications

Water, energy and environmental pollution remain as major global issues despite significant advancement in technology. Graphene quantum dots (GQDs), a unique zero-dimensional (0D) carbon nanomaterial, compose of analogous graphene nanostructure and have garnered strong research interests because of...

Full description

Saved in:
Bibliographic Details
Main Author: Zeng, Zhiping
Other Authors: Tan Thatt Yang Timothy
Format: Theses and Dissertations
Language:English
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/10356/72739
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Water, energy and environmental pollution remain as major global issues despite significant advancement in technology. Graphene quantum dots (GQDs), a unique zero-dimensional (0D) carbon nanomaterial, compose of analogous graphene nanostructure and have garnered strong research interests because of its unique electrical and chemical properties associated with quantum-confinement and edge effects. By exploiting these properties, the current dissertation aims to develop and study a series of novel carbon nanoarchitectures for energy conversion, water and environmental pollutant remediation. A unique 0D/0D nanoarchitecture, (M/GQDs)n (M=Au, Ag, Pt nanocrystals) multilayer composite, was synthesized by using an efficient yet simple layer-by-layer (LbL) self-assembly strategy, showing highly efficient selective catalytic and electrocatalytic methanol oxidation performances. The rational design of a nitrogen-doped GQDs/1D semiconductor (0D/1D) nanoarchitecture of a photoanode with simultaneous nitrogen doping and photosensitization of GQDs collaboratively contribute to enhanced performance in photoelectrochemical (PEC) water splitting. Furthermore, covalent bonding of graphene oxide quantum dots (GOQDs) onto amino modified polyvinylidene fluoride (PVDF) (0D/2D) membrane has generated a new type of nano-carbon functionalized membrane with significantly enhanced antibacterial and antibiofouling properties. This thesis opens up a new platform for rational design and construction of a large variety of 0D/0D, 0D/1D, 0D/2D functional nanostructures for advanced sustainable energy, water and environmental applications.