Electrohemical synthesis of high active palladium-based catalysts for fuel cell

This thesis presents a facile and simple stepwise electroless deposition method for the synthesis of palladium nanoparticles for fuel cell application. The palladium nanoparticles synthesized by the proposed method exhibited high specific and mass activity for both oxygen reduction reaction an...

Full description

Saved in:
Bibliographic Details
Main Author: Poon, Kee Chun
Other Authors: Hirotaka Sato
Format: Theses and Dissertations
Language:English
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/10356/72762
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-72762
record_format dspace
spelling sg-ntu-dr.10356-727622023-03-11T18:05:59Z Electrohemical synthesis of high active palladium-based catalysts for fuel cell Poon, Kee Chun Hirotaka Sato School of Mechanical and Aerospace Engineering DRNTU::Science::Chemistry This thesis presents a facile and simple stepwise electroless deposition method for the synthesis of palladium nanoparticles for fuel cell application. The palladium nanoparticles synthesized by the proposed method exhibited high specific and mass activity for both oxygen reduction reaction and formic acid oxidation compared to commercial platinum and palladium loaded carbon. In particular, the amorphous palladium-phosphorus nanoparticles exhibited the highest specific and mass activity reported in literature so far. For oxygen reduction reaction, the palladium-phosphorus nanoparticles had a specific and mass activity of 6.85 mA cm-2 and 2.21 mA µg-1 respectively which were 4.5 and 2.6 times greater than previously reported values. Furthermore for formic acid oxidation, the palladium-phosphorus nanoparticles had a specific and mass activity of 5.7 mA cm-2 and 2.9 mA µg-1 respectively which were also higher than any previously reported literature values. The palladium nanoparticles where also shown to be more durable than commercial platinum and palladium loaded carbon. Furthermore, the palladium nanoparticles synthesized by the proposed method were also demonstrated to be industrial applicable. Lastly, the proposed synthesis method was also implemented in coating carbon nanotubes with palladium nanoparticles to make a palladium nanoparticles-carbon nanotubes composite. This palladium nanoparticles-carbon nanotubes composite was shown to be able to increase the catalytic and mass activity of bilirubin oxidase in oxygen reduction reaction compared to carbon nanotubes alone. Furthermore, this palladium nanoparticles- carbon nanotubes composite was also demonstrated to be able to increase the electron transfer rate between the bilirubin oxidase and the electrode (99.2 s-1 to 169.4 s-1). Doctor of Philosophy (MAE) 2017-11-11T02:03:27Z 2017-11-11T02:03:27Z 2017 Thesis Poon, K. C. (2017). Electrohemical synthesis of high active palladium-based catalysts for fuel cell. Doctoral thesis, Nanyang Technological University, Singapore. http://hdl.handle.net/10356/72762 10.32657/10356/72762 en 105 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Science::Chemistry
spellingShingle DRNTU::Science::Chemistry
Poon, Kee Chun
Electrohemical synthesis of high active palladium-based catalysts for fuel cell
description This thesis presents a facile and simple stepwise electroless deposition method for the synthesis of palladium nanoparticles for fuel cell application. The palladium nanoparticles synthesized by the proposed method exhibited high specific and mass activity for both oxygen reduction reaction and formic acid oxidation compared to commercial platinum and palladium loaded carbon. In particular, the amorphous palladium-phosphorus nanoparticles exhibited the highest specific and mass activity reported in literature so far. For oxygen reduction reaction, the palladium-phosphorus nanoparticles had a specific and mass activity of 6.85 mA cm-2 and 2.21 mA µg-1 respectively which were 4.5 and 2.6 times greater than previously reported values. Furthermore for formic acid oxidation, the palladium-phosphorus nanoparticles had a specific and mass activity of 5.7 mA cm-2 and 2.9 mA µg-1 respectively which were also higher than any previously reported literature values. The palladium nanoparticles where also shown to be more durable than commercial platinum and palladium loaded carbon. Furthermore, the palladium nanoparticles synthesized by the proposed method were also demonstrated to be industrial applicable. Lastly, the proposed synthesis method was also implemented in coating carbon nanotubes with palladium nanoparticles to make a palladium nanoparticles-carbon nanotubes composite. This palladium nanoparticles-carbon nanotubes composite was shown to be able to increase the catalytic and mass activity of bilirubin oxidase in oxygen reduction reaction compared to carbon nanotubes alone. Furthermore, this palladium nanoparticles- carbon nanotubes composite was also demonstrated to be able to increase the electron transfer rate between the bilirubin oxidase and the electrode (99.2 s-1 to 169.4 s-1).
author2 Hirotaka Sato
author_facet Hirotaka Sato
Poon, Kee Chun
format Theses and Dissertations
author Poon, Kee Chun
author_sort Poon, Kee Chun
title Electrohemical synthesis of high active palladium-based catalysts for fuel cell
title_short Electrohemical synthesis of high active palladium-based catalysts for fuel cell
title_full Electrohemical synthesis of high active palladium-based catalysts for fuel cell
title_fullStr Electrohemical synthesis of high active palladium-based catalysts for fuel cell
title_full_unstemmed Electrohemical synthesis of high active palladium-based catalysts for fuel cell
title_sort electrohemical synthesis of high active palladium-based catalysts for fuel cell
publishDate 2017
url http://hdl.handle.net/10356/72762
_version_ 1761781388603817984