Synthesis of transition metal dichalcogenide-based heterostructures for efficient photocatalytic hydrogen evolution

Exploiting low-cost and earth-abundant photocatalysts is of great importance to achieve highly efficient photocatalytic water splitting. Transition metal dichalcogenides (TMDs) already show excellent performance using as co-catalysts for hydrogen evolution reaction (HER). However, the synthesis of T...

Full description

Saved in:
Bibliographic Details
Main Author: Chen, Junze
Other Authors: Zhang Hua
Format: Theses and Dissertations
Language:English
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/10356/72763
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-72763
record_format dspace
spelling sg-ntu-dr.10356-727632023-03-04T16:46:47Z Synthesis of transition metal dichalcogenide-based heterostructures for efficient photocatalytic hydrogen evolution Chen, Junze Zhang Hua School of Materials Science & Engineering DRNTU::Science::Chemistry::Inorganic chemistry Exploiting low-cost and earth-abundant photocatalysts is of great importance to achieve highly efficient photocatalytic water splitting. Transition metal dichalcogenides (TMDs) already show excellent performance using as co-catalysts for hydrogen evolution reaction (HER). However, the synthesis of TMD-based heterostructure photocatalysts which possess rich active sites for HER remains urgent. The aim of this thesis is to develop novel TMD-based heterostructures which exposed large amount of active edge-sites to improve the activity toward photocatalytic HER under visible light irradiation. To achieve this goal, the following works have been done. First, a facile one-pot method has been developed to synthesize nearly monodisperse CdS-MoS2 and CdS-WS2 heterostructures with an average diameter of about 6 nm. Monolayer MoS2/WS2 with a lateral size around 6 nm was grown on one side of bullet-like CdS particles. The direct contact of CdS and MoS2/WS2 monolayer improved the electron transfer and reduced the charge carrier recombination. What is more, these heterostructures possess lots of exposed edge sites in the MoS2/WS2 layers, which are also the active sites for HER. The photocatalytic activity of CdS-WS2 and CdS-MoS2 heterojunctions towards photocatalytic hydrogen production under light irradiation are about 16 and 12 times of that of pure CdS. The heterojunctions also shown improved durability, 70% of activity is still remained after long-time evaluation (total 16 h). Second, for the first time, controlled synthesis of a new type of heterostructure was reported, in which TMD nanosheets (NSs) (i.e., MoS2 and MoSe2) vertically grown along the longitudinal direction of 1D Cu2-xS nanowire (NW) in an epitaxial manner. The heterostructures were systematically characterized by the high-angle annular dark (bright)-field scanning transmission electron microscopy, which demonstrated that the well match of crystal symmetries and lattice fringes between the TMD and Cu2S is critical for the construction of these epitaxial heterostructures. The architectures of the heterostructures can be well maintained after the composition and crystal structure of the original Cu2-xS nanowires were transformed by a well-known cation exchange method (e.g., Cu2-xS to CdS). The as-obtained CdS-MoS2 heterostructures with different loadings of MoS2 are used as photocatalysts for photocatalytic HER, exhibiting enhanced photocatalytic activity towards HER under visible light irradiation as compared to the pure CdS nanowires. This synthetic strategy opens up a new way for the controlled synthesis of TMD-based heterostructures which could have various promising applications. Doctor of Philosophy (MSE) 2017-11-11T02:12:09Z 2017-11-11T02:12:09Z 2017 Thesis Chen, J. (2017). Synthesis of transition metal dichalcogenide-based heterostructures for efficient photocatalytic hydrogen evolution. Doctoral thesis, Nanyang Technological University, Singapore. http://hdl.handle.net/10356/72763 10.32657/10356/72763 en 130 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Science::Chemistry::Inorganic chemistry
spellingShingle DRNTU::Science::Chemistry::Inorganic chemistry
Chen, Junze
Synthesis of transition metal dichalcogenide-based heterostructures for efficient photocatalytic hydrogen evolution
description Exploiting low-cost and earth-abundant photocatalysts is of great importance to achieve highly efficient photocatalytic water splitting. Transition metal dichalcogenides (TMDs) already show excellent performance using as co-catalysts for hydrogen evolution reaction (HER). However, the synthesis of TMD-based heterostructure photocatalysts which possess rich active sites for HER remains urgent. The aim of this thesis is to develop novel TMD-based heterostructures which exposed large amount of active edge-sites to improve the activity toward photocatalytic HER under visible light irradiation. To achieve this goal, the following works have been done. First, a facile one-pot method has been developed to synthesize nearly monodisperse CdS-MoS2 and CdS-WS2 heterostructures with an average diameter of about 6 nm. Monolayer MoS2/WS2 with a lateral size around 6 nm was grown on one side of bullet-like CdS particles. The direct contact of CdS and MoS2/WS2 monolayer improved the electron transfer and reduced the charge carrier recombination. What is more, these heterostructures possess lots of exposed edge sites in the MoS2/WS2 layers, which are also the active sites for HER. The photocatalytic activity of CdS-WS2 and CdS-MoS2 heterojunctions towards photocatalytic hydrogen production under light irradiation are about 16 and 12 times of that of pure CdS. The heterojunctions also shown improved durability, 70% of activity is still remained after long-time evaluation (total 16 h). Second, for the first time, controlled synthesis of a new type of heterostructure was reported, in which TMD nanosheets (NSs) (i.e., MoS2 and MoSe2) vertically grown along the longitudinal direction of 1D Cu2-xS nanowire (NW) in an epitaxial manner. The heterostructures were systematically characterized by the high-angle annular dark (bright)-field scanning transmission electron microscopy, which demonstrated that the well match of crystal symmetries and lattice fringes between the TMD and Cu2S is critical for the construction of these epitaxial heterostructures. The architectures of the heterostructures can be well maintained after the composition and crystal structure of the original Cu2-xS nanowires were transformed by a well-known cation exchange method (e.g., Cu2-xS to CdS). The as-obtained CdS-MoS2 heterostructures with different loadings of MoS2 are used as photocatalysts for photocatalytic HER, exhibiting enhanced photocatalytic activity towards HER under visible light irradiation as compared to the pure CdS nanowires. This synthetic strategy opens up a new way for the controlled synthesis of TMD-based heterostructures which could have various promising applications.
author2 Zhang Hua
author_facet Zhang Hua
Chen, Junze
format Theses and Dissertations
author Chen, Junze
author_sort Chen, Junze
title Synthesis of transition metal dichalcogenide-based heterostructures for efficient photocatalytic hydrogen evolution
title_short Synthesis of transition metal dichalcogenide-based heterostructures for efficient photocatalytic hydrogen evolution
title_full Synthesis of transition metal dichalcogenide-based heterostructures for efficient photocatalytic hydrogen evolution
title_fullStr Synthesis of transition metal dichalcogenide-based heterostructures for efficient photocatalytic hydrogen evolution
title_full_unstemmed Synthesis of transition metal dichalcogenide-based heterostructures for efficient photocatalytic hydrogen evolution
title_sort synthesis of transition metal dichalcogenide-based heterostructures for efficient photocatalytic hydrogen evolution
publishDate 2017
url http://hdl.handle.net/10356/72763
_version_ 1759854896603987968