Coding in theoretical computer science

This thesis contains three topics, list decoding of rank-metric codes, local decoding of Reed-Muller codes and the design of tampering detection codes and its generalization non-malleable codes. The first two topics are the central problems in theoretical computer science and the last one has crypto...

Full description

Saved in:
Bibliographic Details
Main Author: Chen, Yuan
Other Authors: Xing Chaoping
Format: Theses and Dissertations
Language:English
Published: 2018
Subjects:
Online Access:http://hdl.handle.net/10356/73170
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-73170
record_format dspace
spelling sg-ntu-dr.10356-731702023-02-28T23:48:37Z Coding in theoretical computer science Chen, Yuan Xing Chaoping School of Physical and Mathematical Sciences DRNTU::Science::Mathematics::Discrete mathematics::Cryptography DRNTU::Engineering::Computer science and engineering::Data::Coding and information theory DRNTU::Science::Mathematics::Discrete mathematics::Combinatorics This thesis contains three topics, list decoding of rank-metric codes, local decoding of Reed-Muller codes and the design of tampering detection codes and its generalization non-malleable codes. The first two topics are the central problems in theoretical computer science and the last one has cryptographic background. They are all focused on the design or decoding of codes with certain properties. In the first topic, we present an explicit construction of rank-metric codes with constant ratio. Such codes are list decoded beyond unique decoding radius which answers an open problem in~\cite{Guru2015}. The ratio of our rank-metric codes can reach $1/2$. Our construction can be seen as a step toward the list decoding of square rank metric codes. These results appear in Chapter 2. In Chapter 3, we further develop a combinatorial tool contributed to this issue, namely subspace design set. Our result can be treated as a generalization of the construction in~\cite{Guru2013B}. In the second topic, we design an local decoding algorithm of Reed-Muller codes based on algebraic geometry codes. The traditional local decoding algorithm of Reed-Muller codes are based on the line decoding, i.e., the decoding of Reed-Solomon codes. If we want to recover multiple points, we have to run this line decoding multiple rounds. To overcome this drawback, we propose a curve decoding via algebraic geometry codes. Our local decoding algorithm can recover as many points as possible in one round. Moreover, our algorithm outperforms the previous local decoding algorithm in both the error probability and query length. %Based on this local decoding algorithm, we present a local list-decoder of Reed-Muller codes. Our local list-decoder runs in sub-linear time in code length and list decode Reed-Muller codes up to the radius $1-\sqrt{\frac{2d}{q}}$. Our result improves the best known local list-decoder over large field~\cite{STV2001}. %All these results can be found in Chapter 4. In our last topic, we focus on the design of tampering detection codes or non-malleable codes resistant to large families of tampering function. Our first result answers the open problem in~\cite{CPX15} by constructing asymptotic optimal systematic Algebraic Manipulation Detection codes. Our second result yields optimal-rate tampering detection codes resistant to the family of linearized polynomials with certain degree. Both of the results are included in Chapter 5. In Chapter 6, we design a class of linear-time encoding and decoding non-malleable codes which is resistant to the family of bit-wise tampering and permutation functions. Our codes extend the non-malleable codes in~\cite{CDD16} which are only resistant to the family of bit-wise tampering functions. ​Doctor of Philosophy (SPMS) 2018-01-08T07:09:00Z 2018-01-08T07:09:00Z 2018 Thesis Chen, Y. (2018). Coding in theoretical computer science. Doctoral thesis, Nanyang Technological University, Singapore. http://hdl.handle.net/10356/73170 10.32657/10356/73170 en 152 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Science::Mathematics::Discrete mathematics::Cryptography
DRNTU::Engineering::Computer science and engineering::Data::Coding and information theory
DRNTU::Science::Mathematics::Discrete mathematics::Combinatorics
spellingShingle DRNTU::Science::Mathematics::Discrete mathematics::Cryptography
DRNTU::Engineering::Computer science and engineering::Data::Coding and information theory
DRNTU::Science::Mathematics::Discrete mathematics::Combinatorics
Chen, Yuan
Coding in theoretical computer science
description This thesis contains three topics, list decoding of rank-metric codes, local decoding of Reed-Muller codes and the design of tampering detection codes and its generalization non-malleable codes. The first two topics are the central problems in theoretical computer science and the last one has cryptographic background. They are all focused on the design or decoding of codes with certain properties. In the first topic, we present an explicit construction of rank-metric codes with constant ratio. Such codes are list decoded beyond unique decoding radius which answers an open problem in~\cite{Guru2015}. The ratio of our rank-metric codes can reach $1/2$. Our construction can be seen as a step toward the list decoding of square rank metric codes. These results appear in Chapter 2. In Chapter 3, we further develop a combinatorial tool contributed to this issue, namely subspace design set. Our result can be treated as a generalization of the construction in~\cite{Guru2013B}. In the second topic, we design an local decoding algorithm of Reed-Muller codes based on algebraic geometry codes. The traditional local decoding algorithm of Reed-Muller codes are based on the line decoding, i.e., the decoding of Reed-Solomon codes. If we want to recover multiple points, we have to run this line decoding multiple rounds. To overcome this drawback, we propose a curve decoding via algebraic geometry codes. Our local decoding algorithm can recover as many points as possible in one round. Moreover, our algorithm outperforms the previous local decoding algorithm in both the error probability and query length. %Based on this local decoding algorithm, we present a local list-decoder of Reed-Muller codes. Our local list-decoder runs in sub-linear time in code length and list decode Reed-Muller codes up to the radius $1-\sqrt{\frac{2d}{q}}$. Our result improves the best known local list-decoder over large field~\cite{STV2001}. %All these results can be found in Chapter 4. In our last topic, we focus on the design of tampering detection codes or non-malleable codes resistant to large families of tampering function. Our first result answers the open problem in~\cite{CPX15} by constructing asymptotic optimal systematic Algebraic Manipulation Detection codes. Our second result yields optimal-rate tampering detection codes resistant to the family of linearized polynomials with certain degree. Both of the results are included in Chapter 5. In Chapter 6, we design a class of linear-time encoding and decoding non-malleable codes which is resistant to the family of bit-wise tampering and permutation functions. Our codes extend the non-malleable codes in~\cite{CDD16} which are only resistant to the family of bit-wise tampering functions.
author2 Xing Chaoping
author_facet Xing Chaoping
Chen, Yuan
format Theses and Dissertations
author Chen, Yuan
author_sort Chen, Yuan
title Coding in theoretical computer science
title_short Coding in theoretical computer science
title_full Coding in theoretical computer science
title_fullStr Coding in theoretical computer science
title_full_unstemmed Coding in theoretical computer science
title_sort coding in theoretical computer science
publishDate 2018
url http://hdl.handle.net/10356/73170
_version_ 1759856163356147712