Gelatin methacryloyl inverted colloidal crystal scaffolds as artificial liver platform
Artificial organs are vital for drug development since preclinical animal testing has a limitation in human toxicity prediction, occasionally leading to severe damages. In particular the liver which is an organ that serves the functions in drug metabolism and detoxification, would play a critical ro...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/73171 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-73171 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-731712021-03-20T13:32:19Z Gelatin methacryloyl inverted colloidal crystal scaffolds as artificial liver platform Shirahama, Hitomi Cho Nam-Joon Interdisciplinary Graduate School (IGS) DRNTU::Engineering::Bioengineering Artificial organs are vital for drug development since preclinical animal testing has a limitation in human toxicity prediction, occasionally leading to severe damages. In particular the liver which is an organ that serves the functions in drug metabolism and detoxification, would play a critical role in toxicity screening when reconstructed in vitro. However, primary hepatocytes lose their functions when seeded onto plain substrates, and maintaining the functions ex vivo has been challenging. One of the cues found in liver tissue engineering to keep hepatocyte phenotype is the structural dimensionality; three-dimensional (3D) culture systems which emulate the liver microenvironment, provide enhanced cell-cell interactions and cell-material interactions compared to those in two-dimensions, resulting in prolonged of hepatocyte functions. Therefore, in-vivo-like platforms that mimic the liver microstructure have been in high demand. The overall goal of this dissertation is to create a liver-mimicking platform that can aid in maintaining hepatic functions. Besides cells, the liver is composed of extracellular matrices (ECM) with highly-ordered, porous structure. On the other hand, fabrication of such ECM-based highly-ordered scaffold has been challenging. Problems lie in high viscosity and in slow crosslinking of the aqueous protein solutions for building complex configuration. In this thesis, the material chosen for the platform is a photocrosslinkable protein, gelatin methacryloyl (GelMA). Gelatin is a hydrolyzed form of collagen, which is the main component of the liver structure. While preserving biological advantages of collagen/gelatin, the functionalized gelatin can be crosslinked in minutes in the presence of ultraviolet light and a photoinitiator. Furthermore, aqueous solutions of GelMA are much less viscous than the parent materials. However, the synthesis method has not been optimized in a systematic manner, leaving room for improvement. The first work presented in this thesis is to revamp GelMA synthesis through finding appropriate buffer systems and reaction conditions such as pH, molarity, temperature, and time. The second part of the thesis work entails characterizing the physical properties of GelMA hydrogels with a simplified model. Rheological experiments on mechanical stiffness, swelling measurements in size and mass, and enzymatic degradation experiments were carried out for comprehensive characterization. Finally, a liver-mimicking hydrogel platform was developed, possessing highly-ordered pores and interconnections. Protein-based inverted colloidal crystal (ICC) scaffolds were fabricated with GelMA and a sacrificial polymer lattice. The use of GelMA enabled easy infiltration into the lattices at a high protein concentration and fast crosslinking. Liver model cells, Huh7.5 cells, in GelMA ICC scaffolds attached well to the surface of GelMA ICC and formed 3D cell constructs with cell multi layers during a culture period of high viability. Relative to GelMA plain surface, cells in GelMA ICC exhibited higher hepatic functions. The results demonstrate the potential of GelMA ICC to be an artificial liver platform – that can maintain hepatic functions and foresee human drug toxicity – and would be contributive to drug discovery and development. Doctor of Philosophy (IGS) 2018-01-08T07:16:53Z 2018-01-08T07:16:53Z 2018 Thesis Shirahama, H. (2018). Gelatin methacryloyl inverted colloidal crystal scaffolds as artificial liver platform. Doctoral thesis, Nanyang Technological University, Singapore. http://hdl.handle.net/10356/73171 10.32657/10356/73171 en 147 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Bioengineering |
spellingShingle |
DRNTU::Engineering::Bioengineering Shirahama, Hitomi Gelatin methacryloyl inverted colloidal crystal scaffolds as artificial liver platform |
description |
Artificial organs are vital for drug development since preclinical animal testing has a limitation in human toxicity prediction, occasionally leading to severe damages. In particular the liver which is an organ that serves the functions in drug metabolism and detoxification, would play a critical role in toxicity screening when reconstructed in vitro. However, primary hepatocytes lose their functions when seeded onto plain substrates, and maintaining the functions ex vivo has been challenging. One of the cues found in liver tissue engineering to keep hepatocyte phenotype is the structural dimensionality; three-dimensional (3D) culture systems which emulate the liver microenvironment, provide enhanced cell-cell interactions and cell-material interactions compared to those in two-dimensions, resulting in prolonged of hepatocyte functions. Therefore, in-vivo-like platforms that mimic the liver microstructure have been in high demand. The overall goal of this dissertation is to create a liver-mimicking platform that can aid in maintaining hepatic functions. Besides cells, the liver is composed of extracellular matrices (ECM) with highly-ordered, porous structure. On the other hand, fabrication of such ECM-based highly-ordered scaffold has been challenging. Problems lie in high viscosity and in slow crosslinking of the aqueous protein solutions for building complex configuration. In this thesis, the material chosen for the platform is a photocrosslinkable protein, gelatin methacryloyl (GelMA). Gelatin is a hydrolyzed form of collagen, which is the main component of the liver structure. While preserving biological advantages of collagen/gelatin, the functionalized gelatin can be crosslinked in minutes in the presence of ultraviolet light and a photoinitiator. Furthermore, aqueous solutions of GelMA are much less viscous than the parent materials. However, the synthesis method has not been optimized in a systematic manner, leaving room for improvement. The first work presented in this thesis is to revamp GelMA synthesis through finding appropriate buffer systems and reaction conditions such as pH, molarity, temperature, and time. The second part of the thesis work entails characterizing the physical properties of GelMA hydrogels with a simplified model. Rheological experiments on mechanical stiffness, swelling measurements in size and mass, and enzymatic degradation experiments were carried out for comprehensive characterization. Finally, a liver-mimicking hydrogel platform was developed, possessing highly-ordered pores and interconnections. Protein-based inverted colloidal crystal (ICC) scaffolds were fabricated with GelMA and a sacrificial polymer lattice. The use of GelMA enabled easy infiltration into the lattices at a high protein concentration and fast crosslinking. Liver model cells, Huh7.5 cells, in GelMA ICC scaffolds attached well to the surface of GelMA ICC and formed 3D cell constructs with cell multi layers during a culture period of high viability. Relative to GelMA plain surface, cells in GelMA ICC exhibited higher hepatic functions. The results demonstrate the potential of GelMA ICC to be an artificial liver platform – that can maintain hepatic functions and foresee human drug toxicity – and would be contributive to drug discovery and development. |
author2 |
Cho Nam-Joon |
author_facet |
Cho Nam-Joon Shirahama, Hitomi |
format |
Theses and Dissertations |
author |
Shirahama, Hitomi |
author_sort |
Shirahama, Hitomi |
title |
Gelatin methacryloyl inverted colloidal crystal scaffolds as artificial liver platform |
title_short |
Gelatin methacryloyl inverted colloidal crystal scaffolds as artificial liver platform |
title_full |
Gelatin methacryloyl inverted colloidal crystal scaffolds as artificial liver platform |
title_fullStr |
Gelatin methacryloyl inverted colloidal crystal scaffolds as artificial liver platform |
title_full_unstemmed |
Gelatin methacryloyl inverted colloidal crystal scaffolds as artificial liver platform |
title_sort |
gelatin methacryloyl inverted colloidal crystal scaffolds as artificial liver platform |
publishDate |
2018 |
url |
http://hdl.handle.net/10356/73171 |
_version_ |
1695706208304889856 |