Computational modelling of protein-protein and cell-cell interaction across multiple scales
To gain a deeper insight into the inner workings of biology, computational modelling is performed for three projects spanning three different scales: namely at the molecular or protein scale, at the intracellular scale and at the intercellular level. 1) The first project is conducted at the molecula...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/73360 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-73360 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-733602021-03-20T13:08:06Z Computational modelling of protein-protein and cell-cell interaction across multiple scales Koon, Yen Ling Koh Cheng Gee Interdisciplinary Graduate School (IGS) DRNTU::Science::Biological sciences::Molecular biology To gain a deeper insight into the inner workings of biology, computational modelling is performed for three projects spanning three different scales: namely at the molecular or protein scale, at the intracellular scale and at the intercellular level. 1) The first project is conducted at the molecular or protein level where we have uncovered Chk1 as a novel interactor of POPX2 through our bioinformatics analysis pipeline. Our bioinformatics analysis pipeline is a combination of two separate strategies: 1. Prediction of POPX2 substrates by finding proteins with close phylogeny relation to known substrates of POPX2 and PP2C domain, 2. Prediction of POPX2 substrates by curation of known interactors of proteins sharing homology to POPX2 using STRING database. 2) The second project is performed at the intracellular level. By constructing a reaction-advection-diffusion model, we have found that to achieve optimum signalling efficiency of proteins transported by scaffold proteins and motor proteins, an optimum concentration of scaffold proteins as well as an optimum speed of motor proteins is necessary. 3) The final project investigates the intercellular realm where we explore how differential regulation of angiogenesis leads to different sprouting angiogenesis patterns. Specifically, we conclude that by considering two commonly neglected mechanisms, namely intracellular Notch heterogeneity as well as tension modulation of rate constants, experimentally observed sprouting patterns can be recapitulated. Doctor of Philosophy (IGS) 2018-02-28T02:36:59Z 2018-02-28T02:36:59Z 2018 Thesis Koon, Y. L. (2018). Computational modelling of protein-protein and cell-cell interaction across multiple scales. Doctoral thesis, Nanyang Technological University, Singapore. http://hdl.handle.net/10356/73360 10.32657/10356/73360 en 164 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science::Biological sciences::Molecular biology |
spellingShingle |
DRNTU::Science::Biological sciences::Molecular biology Koon, Yen Ling Computational modelling of protein-protein and cell-cell interaction across multiple scales |
description |
To gain a deeper insight into the inner workings of biology, computational modelling is performed for three projects spanning three different scales: namely at the molecular or protein scale, at the intracellular scale and at the intercellular level. 1) The first project is conducted at the molecular or protein level where we have uncovered Chk1 as a novel interactor of POPX2 through our bioinformatics analysis pipeline. Our bioinformatics analysis pipeline is a combination of two separate strategies: 1. Prediction of POPX2 substrates by finding proteins with close phylogeny relation to known substrates of POPX2 and PP2C domain, 2. Prediction of POPX2 substrates by curation of known interactors of proteins sharing homology to POPX2 using STRING database. 2) The second project is performed at the intracellular level. By constructing a reaction-advection-diffusion model, we have found that to achieve optimum signalling efficiency of proteins transported by scaffold proteins and motor proteins, an optimum concentration of scaffold proteins as well as an optimum speed of motor proteins is necessary. 3) The final project investigates the intercellular realm where we explore how differential regulation of angiogenesis leads to different sprouting angiogenesis patterns. Specifically, we conclude that by considering two commonly neglected mechanisms, namely intracellular Notch heterogeneity as well as tension modulation of rate constants, experimentally observed sprouting patterns can be recapitulated. |
author2 |
Koh Cheng Gee |
author_facet |
Koh Cheng Gee Koon, Yen Ling |
format |
Theses and Dissertations |
author |
Koon, Yen Ling |
author_sort |
Koon, Yen Ling |
title |
Computational modelling of protein-protein and cell-cell interaction across multiple scales |
title_short |
Computational modelling of protein-protein and cell-cell interaction across multiple scales |
title_full |
Computational modelling of protein-protein and cell-cell interaction across multiple scales |
title_fullStr |
Computational modelling of protein-protein and cell-cell interaction across multiple scales |
title_full_unstemmed |
Computational modelling of protein-protein and cell-cell interaction across multiple scales |
title_sort |
computational modelling of protein-protein and cell-cell interaction across multiple scales |
publishDate |
2018 |
url |
http://hdl.handle.net/10356/73360 |
_version_ |
1695706173756407808 |