Discovery and characterization of novel cysteine-rich peptides in medicinal plants
Small molecules and proteins represent two major families of pharmaceuticals used clinically. In between these two families, in terms of molecular size, are the disulfide-constrained peptides, a class of compounds that have their drug-like advantages of both small molecules and proteins. Disulfide-c...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/73452 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-73452 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-734522023-02-28T18:33:10Z Discovery and characterization of novel cysteine-rich peptides in medicinal plants Tan, Wei Liang James P. Tam School of Biological Sciences DRNTU::Science::Biological sciences::Biochemistry Small molecules and proteins represent two major families of pharmaceuticals used clinically. In between these two families, in terms of molecular size, are the disulfide-constrained peptides, a class of compounds that have their drug-like advantages of both small molecules and proteins. Disulfide-constrained peptides share the advantages of proteins for high on-target specificity and low off-target adverse side effects. They also have the robustness of small molecules to tolerate thermal, chemical and enzymatic degradation. Currently, naturally-occurring constrained peptides in plants are an underexplored chemical space in drug discovery. The objective of my thesis is the discovery and characterization of novel cysteine-rich peptides in medicinal plants. They include Lycium babarum, the plant which produces wolfberries, the popular functional food and herb, from which a novel carboxypeptidase inhibitor and a new class of cysteine-rich peptides, lybatides containing a disulfide-stapled helix, were isolated. The wolfberry carboxypeptidase inhibitor inhibits the activity of carboxypeptidase A comparable to the potato carboxypeptidase inhibitor and may account for the anti-thrombotic effect usually associated to wolfberry. In contrast, lybatides isolated from the root bark of the same tree display a structure of naturally-occurring stapled peptides. This shows that one plant is able to produce different cysteine-rich peptides. In Eurycoma longifolia, commonly known as Tongkat Ali a popular aphrodisiac in Malaysia, a novel 10C-heveinlike peptide, elongtide 1, was isolated and characterized. The structure and disulfide connectivity of eL1 was determined, confirming the previously predicted disulfide connectivity of the 10C-hevein-like peptide subclass. Together, my thesis expands the existing knowledge of cysteine-rich peptides and enriches the number of existing disulfide-constrained peptide scaffolds for drug design and peptidyl therapeutic development. Doctor of Philosophy (SBS) 2018-03-19T04:13:05Z 2018-03-19T04:13:05Z 2018 Thesis Tan, W. L. (2018). Discovery and characterization of novel cysteine-rich peptides in medicinal plants. Doctoral thesis, Nanyang Technological University, Singapore. http://hdl.handle.net/10356/73452 10.32657/10356/73452 en 217 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science::Biological sciences::Biochemistry |
spellingShingle |
DRNTU::Science::Biological sciences::Biochemistry Tan, Wei Liang Discovery and characterization of novel cysteine-rich peptides in medicinal plants |
description |
Small molecules and proteins represent two major families of pharmaceuticals used clinically. In between these two families, in terms of molecular size, are the disulfide-constrained peptides, a class of compounds that have their drug-like advantages of both small molecules and proteins. Disulfide-constrained peptides share the advantages of proteins for high on-target specificity and low off-target adverse side effects. They also have the robustness of small molecules to tolerate thermal, chemical and enzymatic degradation. Currently, naturally-occurring constrained peptides in plants are an underexplored chemical space in drug discovery. The objective of my thesis is the discovery and characterization of novel cysteine-rich peptides in medicinal plants. They include Lycium babarum, the plant which produces wolfberries, the popular functional food and herb, from which a novel carboxypeptidase inhibitor and a new class of cysteine-rich peptides, lybatides containing a disulfide-stapled helix, were isolated. The wolfberry carboxypeptidase inhibitor inhibits the activity of carboxypeptidase A comparable to the potato carboxypeptidase inhibitor and may account for the anti-thrombotic effect usually associated to wolfberry. In contrast, lybatides isolated from the root bark of the same tree display a structure of naturally-occurring stapled peptides. This shows that one plant is able to produce different cysteine-rich peptides. In Eurycoma longifolia, commonly known as Tongkat Ali a popular aphrodisiac in Malaysia, a novel 10C-heveinlike peptide, elongtide 1, was isolated and characterized. The structure and disulfide connectivity of eL1 was determined, confirming the previously predicted disulfide connectivity of the 10C-hevein-like peptide subclass. Together, my thesis expands the existing knowledge of cysteine-rich peptides and enriches the number of existing disulfide-constrained peptide scaffolds for drug design and peptidyl therapeutic development. |
author2 |
James P. Tam |
author_facet |
James P. Tam Tan, Wei Liang |
format |
Theses and Dissertations |
author |
Tan, Wei Liang |
author_sort |
Tan, Wei Liang |
title |
Discovery and characterization of novel cysteine-rich peptides in medicinal plants |
title_short |
Discovery and characterization of novel cysteine-rich peptides in medicinal plants |
title_full |
Discovery and characterization of novel cysteine-rich peptides in medicinal plants |
title_fullStr |
Discovery and characterization of novel cysteine-rich peptides in medicinal plants |
title_full_unstemmed |
Discovery and characterization of novel cysteine-rich peptides in medicinal plants |
title_sort |
discovery and characterization of novel cysteine-rich peptides in medicinal plants |
publishDate |
2018 |
url |
http://hdl.handle.net/10356/73452 |
_version_ |
1759853547702190080 |