A biomechanical model of human upper limb for objective stroke rehabilitation assessment

In stroke rehabilitation, the assessments of the severity of stroke that are based on objective and robust measurements are the key to improve the efficacy of the rehabilitation efforts. It is essential, therefore, to complement the existing tools, where the assessments are partly relied on therapis...

Full description

Saved in:
Bibliographic Details
Main Author: Ang, Wei Sin
Other Authors: Chen I-Ming
Format: Theses and Dissertations
Language:English
Published: 2018
Subjects:
Online Access:http://hdl.handle.net/10356/73470
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-73470
record_format dspace
spelling sg-ntu-dr.10356-734702023-03-11T18:06:24Z A biomechanical model of human upper limb for objective stroke rehabilitation assessment Ang, Wei Sin Chen I-Ming School of Mechanical and Aerospace Engineering DRNTU::Engineering::Mechanical engineering In stroke rehabilitation, the assessments of the severity of stroke that are based on objective and robust measurements are the key to improve the efficacy of the rehabilitation efforts. It is essential, therefore, to complement the existing tools, where the assessments are partly relied on therapists’ subjective judgements, with a tool that can quantify important indicators of stroke recovery. One such indicator is the level of spasticity. The reliability of the current methods of measuring the severity of spasticity can be significantly improved by incorporating a feasible way to measure muscle forces and activations during stroke assessment. However, most of the present methods of estimating muscle forces require input parameters that are difficult to obtain in a clinical setting. A musculoskeletal arm model has been developed to bridge the gap between the domains of muscle forces estimation and stroke rehabilitation assessment. The project is divided into three stages. In the first stage, a biomechanical arm model that computes the joint torques with kinematic data from sensors is developed. The model has three features that eliminate the need for parameters that are difficult to obtain thus making it a feasible tool in clinical settings. The first is the use of a hybrid method that combines the data from sensors and a shoulder rhythm model to compute the orientation of the shoulder complex. The second is a method to compute the elbow joint angles without the need to compute the ambiguous carrying angle. The third is a method of estimating the inertial properties using published data, scaled by parameters that can be easily measured. The musculoskeletal properties of the human arm are added to the model in the second stage. The muscle model consists of 22 muscles that span from the thorax via the shoulder and the upper arm to the forearm. The muscle path is defined using Obstacle Set method where the anatomical structures are modelled using regular-shaped rigid bodies. Dynamics of the muscle is computed based on the Hill’s type muscle model that consists of an active contractile element, a passive parallel element and a series element. Due to the difficulties in defining the moment arms, an optimization routine is designed to compute the optimal moment arms for each muscle for a subject. The muscle-sharing problem is solved using optimization which minimises the square of sum of muscle stresses. The muscle activation predicted by the model is compared to EMG signal for validation. In the final stage of this project, the model is used in the application of spasticity assessment. The tonic stretch reflex threshold (TSRT) which is an indicator for the severity of spasticity is computed using the model. Fifteen patient subjects participated in the experiments where they were assessed by two qualified therapists using Modified Ashworth Scale (MAS), and their motions and EMG signals were captured at the same time. Using the arm model, the TSRT of each patient was measured and ranked. The estimated muscle activation profiles have a high correlation (0.707) to the EMG signal profiles. The null hypothesis that the rankings of the severity using the model and the MAS assessment have no correlation has been tested, and was rejected convincingly (p ≈ 0.0003). These findings suggest that the model has the potential to complement the existing practices by providing an alternative evaluation method. Doctor of Philosophy (MAE) 2018-03-20T01:59:38Z 2018-03-20T01:59:38Z 2018 Thesis http://hdl.handle.net/10356/73470 10.32657/10356/73470 en 120 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Mechanical engineering
spellingShingle DRNTU::Engineering::Mechanical engineering
Ang, Wei Sin
A biomechanical model of human upper limb for objective stroke rehabilitation assessment
description In stroke rehabilitation, the assessments of the severity of stroke that are based on objective and robust measurements are the key to improve the efficacy of the rehabilitation efforts. It is essential, therefore, to complement the existing tools, where the assessments are partly relied on therapists’ subjective judgements, with a tool that can quantify important indicators of stroke recovery. One such indicator is the level of spasticity. The reliability of the current methods of measuring the severity of spasticity can be significantly improved by incorporating a feasible way to measure muscle forces and activations during stroke assessment. However, most of the present methods of estimating muscle forces require input parameters that are difficult to obtain in a clinical setting. A musculoskeletal arm model has been developed to bridge the gap between the domains of muscle forces estimation and stroke rehabilitation assessment. The project is divided into three stages. In the first stage, a biomechanical arm model that computes the joint torques with kinematic data from sensors is developed. The model has three features that eliminate the need for parameters that are difficult to obtain thus making it a feasible tool in clinical settings. The first is the use of a hybrid method that combines the data from sensors and a shoulder rhythm model to compute the orientation of the shoulder complex. The second is a method to compute the elbow joint angles without the need to compute the ambiguous carrying angle. The third is a method of estimating the inertial properties using published data, scaled by parameters that can be easily measured. The musculoskeletal properties of the human arm are added to the model in the second stage. The muscle model consists of 22 muscles that span from the thorax via the shoulder and the upper arm to the forearm. The muscle path is defined using Obstacle Set method where the anatomical structures are modelled using regular-shaped rigid bodies. Dynamics of the muscle is computed based on the Hill’s type muscle model that consists of an active contractile element, a passive parallel element and a series element. Due to the difficulties in defining the moment arms, an optimization routine is designed to compute the optimal moment arms for each muscle for a subject. The muscle-sharing problem is solved using optimization which minimises the square of sum of muscle stresses. The muscle activation predicted by the model is compared to EMG signal for validation. In the final stage of this project, the model is used in the application of spasticity assessment. The tonic stretch reflex threshold (TSRT) which is an indicator for the severity of spasticity is computed using the model. Fifteen patient subjects participated in the experiments where they were assessed by two qualified therapists using Modified Ashworth Scale (MAS), and their motions and EMG signals were captured at the same time. Using the arm model, the TSRT of each patient was measured and ranked. The estimated muscle activation profiles have a high correlation (0.707) to the EMG signal profiles. The null hypothesis that the rankings of the severity using the model and the MAS assessment have no correlation has been tested, and was rejected convincingly (p ≈ 0.0003). These findings suggest that the model has the potential to complement the existing practices by providing an alternative evaluation method.
author2 Chen I-Ming
author_facet Chen I-Ming
Ang, Wei Sin
format Theses and Dissertations
author Ang, Wei Sin
author_sort Ang, Wei Sin
title A biomechanical model of human upper limb for objective stroke rehabilitation assessment
title_short A biomechanical model of human upper limb for objective stroke rehabilitation assessment
title_full A biomechanical model of human upper limb for objective stroke rehabilitation assessment
title_fullStr A biomechanical model of human upper limb for objective stroke rehabilitation assessment
title_full_unstemmed A biomechanical model of human upper limb for objective stroke rehabilitation assessment
title_sort biomechanical model of human upper limb for objective stroke rehabilitation assessment
publishDate 2018
url http://hdl.handle.net/10356/73470
_version_ 1761781446607896576