Supervised target data hashing with domain adaptation

In many real-world applications, the ability of knowledge transfer is required everywhere, which leads to a dramatic increase of the research interests targeting on cross domain learning. When a large amount of labeled data is required for training a model, one feasible solution is to reuse knowledg...

Full description

Saved in:
Bibliographic Details
Main Author: Zhang, Wanlu
Other Authors: Pan Jialin, Sinno
Format: Final Year Project
Language:English
Published: 2018
Subjects:
Online Access:http://hdl.handle.net/10356/73945
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-73945
record_format dspace
spelling sg-ntu-dr.10356-739452023-03-03T20:25:19Z Supervised target data hashing with domain adaptation Zhang, Wanlu Pan Jialin, Sinno School of Computer Science and Engineering Centre for Computational Intelligence DRNTU::Engineering In many real-world applications, the ability of knowledge transfer is required everywhere, which leads to a dramatic increase of the research interests targeting on cross domain learning. When a large amount of labeled data is required for training a model, one feasible solution is to reuse knowledge learned from another dataset which has plenty of information provided and has some similarities with the source dataset. However, simply using the knowledge obtained from source data and putting it directly on the target domain might not be able to generate good performance, especially when the data distributions of the two domains have large differences. Thus, it is necessary to introduce a domain adaptation method that could reduce the effect of domain shift. Furthermore, with the explosive growth of data, images of large volume and high dimension are pervasive, which leads to challenges like storage capability as well as data retrieval efficiency. To tackle this concern, hashing has emerged as one of the most popular solutions. It is a technique that transforms high dimensional data into precisely compact binary values, which is being widely used in various of computer vision tasks. The objective of this project is to integrate domain adaptation with hash learning such that target data retrieval can be performed precisely. A novel model architecture is introduced in this report. It consists of three major parts, a Basic Feature Extractor, a Shared Code Generator and a Specific Code Generator. The Shared Code Generator is used to reduce domain disparity and outputs code that is extracted from both domains, while the Specific Code Generator is only designed for target data in order to capture more information on the target domain. Various experiments are carried out and based on empirical studies, the proposed framework achieves great performance. Bachelor of Engineering (Computer Science) 2018-04-20T03:10:11Z 2018-04-20T03:10:11Z 2018 Final Year Project (FYP) http://hdl.handle.net/10356/73945 en Nanyang Technological University 41 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering
spellingShingle DRNTU::Engineering
Zhang, Wanlu
Supervised target data hashing with domain adaptation
description In many real-world applications, the ability of knowledge transfer is required everywhere, which leads to a dramatic increase of the research interests targeting on cross domain learning. When a large amount of labeled data is required for training a model, one feasible solution is to reuse knowledge learned from another dataset which has plenty of information provided and has some similarities with the source dataset. However, simply using the knowledge obtained from source data and putting it directly on the target domain might not be able to generate good performance, especially when the data distributions of the two domains have large differences. Thus, it is necessary to introduce a domain adaptation method that could reduce the effect of domain shift. Furthermore, with the explosive growth of data, images of large volume and high dimension are pervasive, which leads to challenges like storage capability as well as data retrieval efficiency. To tackle this concern, hashing has emerged as one of the most popular solutions. It is a technique that transforms high dimensional data into precisely compact binary values, which is being widely used in various of computer vision tasks. The objective of this project is to integrate domain adaptation with hash learning such that target data retrieval can be performed precisely. A novel model architecture is introduced in this report. It consists of three major parts, a Basic Feature Extractor, a Shared Code Generator and a Specific Code Generator. The Shared Code Generator is used to reduce domain disparity and outputs code that is extracted from both domains, while the Specific Code Generator is only designed for target data in order to capture more information on the target domain. Various experiments are carried out and based on empirical studies, the proposed framework achieves great performance.
author2 Pan Jialin, Sinno
author_facet Pan Jialin, Sinno
Zhang, Wanlu
format Final Year Project
author Zhang, Wanlu
author_sort Zhang, Wanlu
title Supervised target data hashing with domain adaptation
title_short Supervised target data hashing with domain adaptation
title_full Supervised target data hashing with domain adaptation
title_fullStr Supervised target data hashing with domain adaptation
title_full_unstemmed Supervised target data hashing with domain adaptation
title_sort supervised target data hashing with domain adaptation
publishDate 2018
url http://hdl.handle.net/10356/73945
_version_ 1759857133274267648