A modified Beddoes-Leishman dynamic stall model for wind turbine applications

Dynamic stall is phenomenon that plays a role in many applications such as helicopter or wind turbine aerodynamics. Proper modelling of unsteady lift, drag, and pitching moment characteristics of an airfoil undergoing dynamic stall can help to give more accurate performance predictions, but has turn...

Full description

Saved in:
Bibliographic Details
Main Author: Reinecke, Arne
Other Authors: Chua Leok Poh
Format: Theses and Dissertations
Language:English
Published: 2018
Subjects:
Online Access:http://hdl.handle.net/10356/74184
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Dynamic stall is phenomenon that plays a role in many applications such as helicopter or wind turbine aerodynamics. Proper modelling of unsteady lift, drag, and pitching moment characteristics of an airfoil undergoing dynamic stall can help to give more accurate performance predictions, but has turned out to be extremely challenging. The so-called Beddoes-Leishman models – based on indicial formulation with semi-empirical parameters – are considered current state-of-the-art and are incorporated in Blade Element Momentum as well as Vortex Wake Methods in codes for aerodynamic wind turbine analysis. These models contain empirical parameters and time constants that need to be determined manually by comparison to experimental data in a tedious, ’trial & error’ fashion. This thesis investigates the uses of numerical techniques to find optimal values for these parameters. An Evolutionary Strategy is employed optimizing the parameter set and thus, coming up with a parameter set that gives similar, if not better match to the experimental data than default values.