Fabrication and characterization of Si/transition metal oxide solar cell

The project investigates n-Si/MoOx heterojunction solar cells based on n type crystalline silicon (c-Si) and transition metal oxide layer, MoOx, x~3, to act as the p-type layer. The n-Si/MoOx solar cells feature contacts constructed with Ti/Pd/Ag cathode and Ag anode, on the fabricated n-Si/MoOx/ITO...

Full description

Saved in:
Bibliographic Details
Main Author: Poa, Aloysius Jun Hao
Other Authors: Rusli
Format: Final Year Project
Language:English
Published: 2018
Subjects:
Online Access:http://hdl.handle.net/10356/74241
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-74241
record_format dspace
spelling sg-ntu-dr.10356-742412023-07-07T16:09:27Z Fabrication and characterization of Si/transition metal oxide solar cell Poa, Aloysius Jun Hao Rusli School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering The project investigates n-Si/MoOx heterojunction solar cells based on n type crystalline silicon (c-Si) and transition metal oxide layer, MoOx, x~3, to act as the p-type layer. The n-Si/MoOx solar cells feature contacts constructed with Ti/Pd/Ag cathode and Ag anode, on the fabricated n-Si/MoOx/ITO layers. Si wafers with different n type doping concentrations ND of 10^14 – 10^17/cm3 have been used for the fabrication of the hybrid cells using a simple 7-step fabrication procedure. A highest power conversion efficiency (PCE) of ~8.66% has been obtained for a 1 x 1 cm cell for Si wafer with a doping concentration of 10^14 /cm3. The PCE of the other n-Si/MoOx solar cells with different concentrations are as follows: 7.43% for ND = 10^15/cm3, 6.83% for ND = 10^16/cm3 and 2.88% for ND = 10^17/cm3. The parameters of the solar cells such as Voc, Isc, Rs, Rp, n1, and n2 have also been deduced from the experimental JV and lnJ-V curves, and analyzed thereafter. One future improvement proposed to improve the performance of the cell is on the implementation of silver nanowire for the electrode. Bachelor of Engineering 2018-05-14T03:52:53Z 2018-05-14T03:52:53Z 2018 Final Year Project (FYP) http://hdl.handle.net/10356/74241 en Nanyang Technological University 90 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Electrical and electronic engineering
spellingShingle DRNTU::Engineering::Electrical and electronic engineering
Poa, Aloysius Jun Hao
Fabrication and characterization of Si/transition metal oxide solar cell
description The project investigates n-Si/MoOx heterojunction solar cells based on n type crystalline silicon (c-Si) and transition metal oxide layer, MoOx, x~3, to act as the p-type layer. The n-Si/MoOx solar cells feature contacts constructed with Ti/Pd/Ag cathode and Ag anode, on the fabricated n-Si/MoOx/ITO layers. Si wafers with different n type doping concentrations ND of 10^14 – 10^17/cm3 have been used for the fabrication of the hybrid cells using a simple 7-step fabrication procedure. A highest power conversion efficiency (PCE) of ~8.66% has been obtained for a 1 x 1 cm cell for Si wafer with a doping concentration of 10^14 /cm3. The PCE of the other n-Si/MoOx solar cells with different concentrations are as follows: 7.43% for ND = 10^15/cm3, 6.83% for ND = 10^16/cm3 and 2.88% for ND = 10^17/cm3. The parameters of the solar cells such as Voc, Isc, Rs, Rp, n1, and n2 have also been deduced from the experimental JV and lnJ-V curves, and analyzed thereafter. One future improvement proposed to improve the performance of the cell is on the implementation of silver nanowire for the electrode.
author2 Rusli
author_facet Rusli
Poa, Aloysius Jun Hao
format Final Year Project
author Poa, Aloysius Jun Hao
author_sort Poa, Aloysius Jun Hao
title Fabrication and characterization of Si/transition metal oxide solar cell
title_short Fabrication and characterization of Si/transition metal oxide solar cell
title_full Fabrication and characterization of Si/transition metal oxide solar cell
title_fullStr Fabrication and characterization of Si/transition metal oxide solar cell
title_full_unstemmed Fabrication and characterization of Si/transition metal oxide solar cell
title_sort fabrication and characterization of si/transition metal oxide solar cell
publishDate 2018
url http://hdl.handle.net/10356/74241
_version_ 1772827743849807872