3D printing for biological applications

Different 3D printing methods with different biomaterials to create structures for cell-cell interactions were discussed. In this research, three different printed structures were printed from three different 3D printing techniques for the studies of cell interactions. Biopolymer of PCL and it nanoc...

Full description

Saved in:
Bibliographic Details
Main Author: Ho, Benjamin Chee Meng
Other Authors: Yoon Yong Jin
Format: Theses and Dissertations
Language:English
Published: 2018
Subjects:
Online Access:http://hdl.handle.net/10356/74578
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-74578
record_format dspace
spelling sg-ntu-dr.10356-745782023-03-11T18:00:39Z 3D printing for biological applications Ho, Benjamin Chee Meng Yoon Yong Jin School of Mechanical and Aerospace Engineering DRNTU::Engineering::Electrical and electronic engineering::Control and instrumentation::Medical electronics Different 3D printing methods with different biomaterials to create structures for cell-cell interactions were discussed. In this research, three different printed structures were printed from three different 3D printing techniques for the studies of cell interactions. Biopolymer of PCL and it nanocomposites have been designed and fabricated using 3D bioprinter for cardiac tissue engineering. Mechanical, thermal and biological characterisation were done for the printed scaffolds with cardiac cells to determine how these properties affects cell growth. Biodegradation was also tested using Pseudomonas lipase to determine the possible use of these printed scaffolds for cardiac tissue engineering. Results showed that cardiac cells grow better on 3D printed scaffold of PCL with 1% CNT as compared to PCL and PCL with 3% CNT. Next, to have a better understanding on how bacteria cells communicate with one another in a liquid culture, PEGDA hydrogel was designed and fabricated using stereolithography system. Quorum sensing (QS) through secreted small molecules is one of the ways in which Pseudomonas aeruginosa cells communicate with one another. So, by spatially designing honey-combed structures, QS molecules can be diffused across the hydrogel for cells to interact. Mechanical, swelling and printability properties of the structures were determined to obtain fully functional structures for cell interactions for 24 hours. Well-defined honey combed structures could be printed with PEGDA with 1% Igra819. These structures will then be seeded with P. aeruginosa for further studies. Finally, two photon polymerisation was used to print and spatial pattern bacteria cells in an encapsulated gelatin matrix. These structures save time as cells can be printed directly. A predatory interaction between E. coli and S. aureus was observed through a microcolony assay. Initial results from the distal and mix marcolony assay showed that this predatory effect was only observed when E. coli and S. aureus were in close proximity of each other. Predatory mechanism was deduced through RNA sequencing and Transposon screening. Due to its high resolution, 2PP was used to spatial pattern E. coli and S. aureus with distance up to 50 microns apart. With more research on 3D printing and biomaterials, the search for the “killer application” in biology might be realised in the near future. Doctor of Philosophy (MAE) 2018-05-22T02:14:50Z 2018-05-22T02:14:50Z 2018 Thesis Ho, B. C. M. (2018). 3D printing for biological applications. Doctoral thesis, Nanyang Technological University, Singapore. http://hdl.handle.net/10356/74578 10.32657/10356/74578 en 109 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Electrical and electronic engineering::Control and instrumentation::Medical electronics
spellingShingle DRNTU::Engineering::Electrical and electronic engineering::Control and instrumentation::Medical electronics
Ho, Benjamin Chee Meng
3D printing for biological applications
description Different 3D printing methods with different biomaterials to create structures for cell-cell interactions were discussed. In this research, three different printed structures were printed from three different 3D printing techniques for the studies of cell interactions. Biopolymer of PCL and it nanocomposites have been designed and fabricated using 3D bioprinter for cardiac tissue engineering. Mechanical, thermal and biological characterisation were done for the printed scaffolds with cardiac cells to determine how these properties affects cell growth. Biodegradation was also tested using Pseudomonas lipase to determine the possible use of these printed scaffolds for cardiac tissue engineering. Results showed that cardiac cells grow better on 3D printed scaffold of PCL with 1% CNT as compared to PCL and PCL with 3% CNT. Next, to have a better understanding on how bacteria cells communicate with one another in a liquid culture, PEGDA hydrogel was designed and fabricated using stereolithography system. Quorum sensing (QS) through secreted small molecules is one of the ways in which Pseudomonas aeruginosa cells communicate with one another. So, by spatially designing honey-combed structures, QS molecules can be diffused across the hydrogel for cells to interact. Mechanical, swelling and printability properties of the structures were determined to obtain fully functional structures for cell interactions for 24 hours. Well-defined honey combed structures could be printed with PEGDA with 1% Igra819. These structures will then be seeded with P. aeruginosa for further studies. Finally, two photon polymerisation was used to print and spatial pattern bacteria cells in an encapsulated gelatin matrix. These structures save time as cells can be printed directly. A predatory interaction between E. coli and S. aureus was observed through a microcolony assay. Initial results from the distal and mix marcolony assay showed that this predatory effect was only observed when E. coli and S. aureus were in close proximity of each other. Predatory mechanism was deduced through RNA sequencing and Transposon screening. Due to its high resolution, 2PP was used to spatial pattern E. coli and S. aureus with distance up to 50 microns apart. With more research on 3D printing and biomaterials, the search for the “killer application” in biology might be realised in the near future.
author2 Yoon Yong Jin
author_facet Yoon Yong Jin
Ho, Benjamin Chee Meng
format Theses and Dissertations
author Ho, Benjamin Chee Meng
author_sort Ho, Benjamin Chee Meng
title 3D printing for biological applications
title_short 3D printing for biological applications
title_full 3D printing for biological applications
title_fullStr 3D printing for biological applications
title_full_unstemmed 3D printing for biological applications
title_sort 3d printing for biological applications
publishDate 2018
url http://hdl.handle.net/10356/74578
_version_ 1761781213540909056