Sensitivity analysis of the beam optics of a superconducting gantry for proton therapy

A superconducting gantry design is proposed to reduce the size, weight, and complexity of the gantry in the proton therapy facility in Paul Scherrer Institut (PSI), Switzerland. In this thesis, two beam optics programmes, namely TRANSPORT and COSY INFINITY 9.1, have been used to determine the mo...

Full description

Saved in:
Bibliographic Details
Main Author: Wongso, Shelvia
Other Authors: Chew Lock Yue
Format: Final Year Project
Language:English
Published: 2018
Subjects:
Online Access:http://hdl.handle.net/10356/74951
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-74951
record_format dspace
spelling sg-ntu-dr.10356-749512023-02-28T23:14:17Z Sensitivity analysis of the beam optics of a superconducting gantry for proton therapy Wongso, Shelvia Chew Lock Yue School of Physical and Mathematical Sciences Paul Scherrer Institut DRNTU::Science A superconducting gantry design is proposed to reduce the size, weight, and complexity of the gantry in the proton therapy facility in Paul Scherrer Institut (PSI), Switzerland. In this thesis, two beam optics programmes, namely TRANSPORT and COSY INFINITY 9.1, have been used to determine the most sensitive magnets in the new gantry beam line with respect to mechanical shift and varying eld strength. The sensitivity analysis is crucial considering the required precision of the pencil beam to hit the tumour at the targeted position within 0.5 mm error with beam size deviation of not more than 0.5 mm. The analysis with both programmes has veri ed that the second normal conducting quadrupole in the beam line is a very sensitive element with respect to horizontal misalignment ( 0.17 mm) while both of the normal conducting quadrupoles are very sensitive with respect to vertical misalignment (0.15 mm). Furthermore, the two normal conducting quadrupoles possess small tolerance of approximately 2.3 T/m with respect to variation in eld strength. It was also found that the phase spaces changed the most when the eld strengths of the superconducting magnets were altered. The tolerance range in each magnet presented in this thesis serves as a gauge for the precision required when designing and mounting the magnets. The values are also important when necessary improvement and corrections to the beam line are considered in order to deliver the desirable beam size at the correct location. Bachelor of Science in Physics 2018-05-25T04:37:37Z 2018-05-25T04:37:37Z 2018 Final Year Project (FYP) http://hdl.handle.net/10356/74951 en 140 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Science
spellingShingle DRNTU::Science
Wongso, Shelvia
Sensitivity analysis of the beam optics of a superconducting gantry for proton therapy
description A superconducting gantry design is proposed to reduce the size, weight, and complexity of the gantry in the proton therapy facility in Paul Scherrer Institut (PSI), Switzerland. In this thesis, two beam optics programmes, namely TRANSPORT and COSY INFINITY 9.1, have been used to determine the most sensitive magnets in the new gantry beam line with respect to mechanical shift and varying eld strength. The sensitivity analysis is crucial considering the required precision of the pencil beam to hit the tumour at the targeted position within 0.5 mm error with beam size deviation of not more than 0.5 mm. The analysis with both programmes has veri ed that the second normal conducting quadrupole in the beam line is a very sensitive element with respect to horizontal misalignment ( 0.17 mm) while both of the normal conducting quadrupoles are very sensitive with respect to vertical misalignment (0.15 mm). Furthermore, the two normal conducting quadrupoles possess small tolerance of approximately 2.3 T/m with respect to variation in eld strength. It was also found that the phase spaces changed the most when the eld strengths of the superconducting magnets were altered. The tolerance range in each magnet presented in this thesis serves as a gauge for the precision required when designing and mounting the magnets. The values are also important when necessary improvement and corrections to the beam line are considered in order to deliver the desirable beam size at the correct location.
author2 Chew Lock Yue
author_facet Chew Lock Yue
Wongso, Shelvia
format Final Year Project
author Wongso, Shelvia
author_sort Wongso, Shelvia
title Sensitivity analysis of the beam optics of a superconducting gantry for proton therapy
title_short Sensitivity analysis of the beam optics of a superconducting gantry for proton therapy
title_full Sensitivity analysis of the beam optics of a superconducting gantry for proton therapy
title_fullStr Sensitivity analysis of the beam optics of a superconducting gantry for proton therapy
title_full_unstemmed Sensitivity analysis of the beam optics of a superconducting gantry for proton therapy
title_sort sensitivity analysis of the beam optics of a superconducting gantry for proton therapy
publishDate 2018
url http://hdl.handle.net/10356/74951
_version_ 1759855173695438848