Numerical investigation of leakage in resonant exchange qubit
In this final year project, we study the effects of 1/f^α noise and nuclear field on leakage in a resonant exchange (RX) qubit. A 1/f^α noise sequence is generated via finite impulse response (FIR) method, and is then introduced into the RX qubit through a simple noise-induced model. In addition, we...
Saved in:
主要作者: | |
---|---|
其他作者: | |
格式: | Final Year Project |
語言: | English |
出版: |
2018
|
主題: | |
在線閱讀: | http://hdl.handle.net/10356/75244 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
總結: | In this final year project, we study the effects of 1/f^α noise and nuclear field on leakage in a resonant exchange (RX) qubit. A 1/f^α noise sequence is generated via finite impulse response (FIR) method, and is then introduced into the RX qubit through a simple noise-induced model. In addition, we propose a simple model for degree of polarization (DOP) to characterize the nuclear field in terms of longitudinal and transversal direction. This thesis cross-examines various parameters related to 1/f^α noise and nuclear field, which include the exponent α, the strength of noise η, the standard deviation of nuclear spin distribution σ and DOP. The simulation demonstrates that leakage is predominantly due to the coupling between the logical qubit states and leakage states via different nuclear field components, and 1/f^α noise does not have significant leakage contribution. |
---|