Bounds on continuous entanglement gain
Entanglement is a physical resource that is important in quantum teleportation, quantum dense coding and quantum cryptography. In this thesis, we investigate entanglement distribution between particles A and B (possibly located in different laboratories) via continuous interaction with an ancilla, C...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/75304 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-75304 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-753042023-02-28T23:11:23Z Bounds on continuous entanglement gain Koo, Edmund Sui Ho Tomasz Paterek School of Physical and Mathematical Sciences DRNTU::Science::Physics::Atomic physics::Quantum theory Entanglement is a physical resource that is important in quantum teleportation, quantum dense coding and quantum cryptography. In this thesis, we investigate entanglement distribution between particles A and B (possibly located in different laboratories) via continuous interaction with an ancilla, C. We assume that A and B do not interact directly with each other, but only via C, and therefore the total Hamiltonian is of the form HAC + HBC. Our first result is the simplification of the expressions for HAC and HBC for a class of commuting Hamiltonians, i.e. [HAC, HBC] = 0 in which HAC is neither a free Hamiltonian on A nor a free Hamiltonian on C (which implies that A and C interact), and likewise HBC is neither a free Hamiltonian on B nor a free Hamiltonian on C. Using these simplifications, we looked at the time evolution of pure product states |αβγi and bi-product states |χiAB |γiC . We were able to analytically prove for pure product states that entanglement A : BC (or B : AC) is bounded by entanglement AB : C, that is the amount of entanglement in C. For bi-product states, we found a promising bound stating that entanglement gain, i.e. entanglement at time t minus initial entanglement is bounded by the entanglement in C. This is confirmed by extensive numerical simulations. We also considered the case where HAC realizes the swap operator SA−C at a particular time and swaps the state of A with C while HBC is just the identity operator. This scenario falls outside the class considered above. For this case, we managed to prove analytically (for bi-product states |χiAB |γiC ) the same bound that we conjectured above Bachelor of Science in Physics 2018-05-30T08:24:38Z 2018-05-30T08:24:38Z 2018 Final Year Project (FYP) http://hdl.handle.net/10356/75304 en 62 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science::Physics::Atomic physics::Quantum theory |
spellingShingle |
DRNTU::Science::Physics::Atomic physics::Quantum theory Koo, Edmund Sui Ho Bounds on continuous entanglement gain |
description |
Entanglement is a physical resource that is important in quantum teleportation, quantum dense coding and quantum cryptography. In this thesis, we investigate entanglement distribution between particles A and B (possibly located in different laboratories) via continuous interaction with an ancilla, C. We assume that A and B do not interact directly with each other, but only via C, and therefore the total Hamiltonian is of the form HAC + HBC. Our first result is the simplification of the expressions for HAC and HBC for a class of commuting Hamiltonians, i.e. [HAC, HBC] = 0 in which HAC is neither a free Hamiltonian on A nor a free Hamiltonian on C (which implies that A and C interact), and likewise HBC is neither a free Hamiltonian on B nor a free Hamiltonian on C. Using these simplifications, we looked at the time evolution of pure product states |αβγi and bi-product states |χiAB |γiC . We were able to analytically prove for pure product states that entanglement A : BC (or B : AC) is bounded by entanglement AB : C, that is the amount of entanglement in C. For bi-product states, we found a promising bound stating that entanglement gain, i.e. entanglement at time t minus initial entanglement is bounded by the entanglement in C. This is confirmed by extensive numerical simulations. We also considered the case where HAC realizes the swap operator SA−C at a particular time and swaps the state of A with C while HBC is just the identity operator. This scenario falls outside the class considered above. For this case, we managed to prove analytically (for bi-product states |χiAB |γiC ) the same bound that we conjectured above |
author2 |
Tomasz Paterek |
author_facet |
Tomasz Paterek Koo, Edmund Sui Ho |
format |
Final Year Project |
author |
Koo, Edmund Sui Ho |
author_sort |
Koo, Edmund Sui Ho |
title |
Bounds on continuous entanglement gain |
title_short |
Bounds on continuous entanglement gain |
title_full |
Bounds on continuous entanglement gain |
title_fullStr |
Bounds on continuous entanglement gain |
title_full_unstemmed |
Bounds on continuous entanglement gain |
title_sort |
bounds on continuous entanglement gain |
publishDate |
2018 |
url |
http://hdl.handle.net/10356/75304 |
_version_ |
1759853338215579648 |