Investigating the feasibility of a cushioning selection method based on a predictive model
Cushion materials are very popular and widely used in various applications. Cellular solid has been used for cushioning for many years due to its low weight and high energy absorption capacity. Cushioning selection is the process of selecting a cushioning material to sufficiently cushion an objec...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/75708 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Cushion materials are very popular and widely used in various applications.
Cellular solid has been used for cushioning for many years due to its low weight and high
energy absorption capacity. Cushioning selection is the process of selecting a cushioning
material to sufficiently cushion an object. There are a few cushion selection methods
available in literature. The objective of this report is to investigate the feasibility of a cushion
selection method based on predicting the impact absorption capacity from static compressive
stress-strain data. This is achieved by comparing the predicted dimensionless deceleration (G)
and the measured G. Polyethylene (foam) and 3D hexagonal array structure (honeycomb)
samples were used to conduct the compression test and drop test. In addition, a mathematical
model for honeycomb structure was proposed for predicting stress-strain curve. For
polyethylene, the predicted G shown higher accuracy at low drop height and became lower
accuracy with increasing drop height. A dynamic factor C was introduced to account for the
difference. For 3D hexagonal array structure, the mathematical model can be applied to
predict the G value for cushion selection. From this report, researchers may explore the
feasibility of this cushion selection method on polyethylene and 3D hexagonal structure or
even conduct experiments on other foams and 3D printed specimens in the future. |
---|