Design of coronary artery bypass connector
Coronary Artery Bypass Grafting (CABG) is one of the most commonly performed open-heart operations. CABG procedures are performed on patients with severe coronary heart disease to provide alternative pathways for blood to reach the heart as a result of blocked or narrowed coronary arteries. This is...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/75751 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Coronary Artery Bypass Grafting (CABG) is one of the most commonly performed open-heart operations. CABG procedures are performed on patients with severe coronary heart disease to provide alternative pathways for blood to reach the heart as a result of blocked or narrowed coronary arteries. This is traditionally done so by suturing a graft to the affected coronary artery, bypassing the blockage. Sutureless anastomotic devices are continuously being developed to replace the suturing process during the CABG procedure for several reasons: Complexity of the conventional suturing procedure, the rise in minimally invasive surgeries and to reduce injuries to vessel walls due to the suture needle. The procedures and requirements for distal anastomosis as well as existing sutureless devices were reviewed, and three design concepts of connectors were drafted and evaluated. The final design chosen is Design Concept A, consisting of a biocompatible and biodegradable mechanical connector and stent. The material of the mechanical connector is chosen to be Polylactide (PLA) polymer and the process selected to fabricate the connector is Fused-Deposition Modelling (FDM). |
---|