Distributed energy storage system for power system control

Due to the intermittent nature of solar PV, the increasing deployment of solar energy may cause a series of issues such as frequency fluctuation and active power unbalance. Distributed energy storage systems (DESSs) could be a feasible solution for the mitigation of large power fluctuation by acting...

Full description

Saved in:
Bibliographic Details
Main Author: Yao, Weitao
Other Authors: Tang Yi
Format: Theses and Dissertations
Language:English
Published: 2018
Subjects:
Online Access:http://hdl.handle.net/10356/75982
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Due to the intermittent nature of solar PV, the increasing deployment of solar energy may cause a series of issues such as frequency fluctuation and active power unbalance. Distributed energy storage systems (DESSs) could be a feasible solution for the mitigation of large power fluctuation by acting as “power buffer” to absorb and release power. This dissertation based on Singapore-Malaysia power system model analyzes DESSs’ influence in frequency regulation considering PV’s penetration. Firstly, a comprehensive power system which consists of modern power grid, PV power plant, energy storage system and baseload is modeled. Then based on this comprehensive power system, from load’s perspective, it provides an effectively mathematic approach to analyze load forecast based on MATLAB software tool. In addition, three frequency control algorithms which contain ramp rate control, local frequency regulation and centralized frequency regulation are provided to prove the effect of DESSs. Finally, this dissertation considers different latency time, capacity and power rating to give some advice on how to optimize frequency control algorithms.