Development of fatigue crack growth model for high pressure natural gas transmission pipelines
Pipelines are the most efficient and advantageous mode of transmission for liquid natural gas. But during manufacturing or during a pipeline’s service life, it incurs damage that can cause dents or cracks on its surface. The severity of such damage is not easy to predict. This is one of the biggest...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/75986 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-75986 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-759862023-07-04T15:56:05Z Development of fatigue crack growth model for high pressure natural gas transmission pipelines Leong, Chih Wei So Ping Lam School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering Pipelines are the most efficient and advantageous mode of transmission for liquid natural gas. But during manufacturing or during a pipeline’s service life, it incurs damage that can cause dents or cracks on its surface. The severity of such damage is not easy to predict. This is one of the biggest problems faced in transmitting natural gas via transmission pipelines. In this dissertation, a model is developed to understand crack growth under fatigue loading cycles. Iterations are performed on various computational fluid dynamics (CFD) viscous models, and the best model is selected to perform maximum iterations. To replicate real time turbulent load conditions, sinusoidal analogies are used, so as to let us understand the effect of quasiperiodic. This is then combined with the linear damage rule to determine cumulative fatigue damage. The main purpose of this dissertation is to determine and understand the severity of the presence of cracks in transmission pipelines. And to achieve that, simulations are performed using the FE tool. All data generated are presented well in this dissertation in chapters for a better understanding of the approach. Master of Science (Power Engineering) 2018-09-11T13:18:11Z 2018-09-11T13:18:11Z 2018 Thesis http://hdl.handle.net/10356/75986 en 94 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Electrical and electronic engineering |
spellingShingle |
DRNTU::Engineering::Electrical and electronic engineering Leong, Chih Wei Development of fatigue crack growth model for high pressure natural gas transmission pipelines |
description |
Pipelines are the most efficient and advantageous mode of transmission for liquid natural gas. But during manufacturing or during a pipeline’s service life, it incurs damage that can cause dents or cracks on its surface. The severity of such damage is not easy to predict. This is one of the biggest problems faced in transmitting natural gas via transmission pipelines.
In this dissertation, a model is developed to understand crack growth under fatigue loading cycles. Iterations are performed on various computational fluid dynamics (CFD) viscous models, and the best model is selected to perform maximum iterations. To replicate real time turbulent load conditions, sinusoidal analogies are used, so as to let us understand the effect of quasiperiodic. This is then combined with the linear damage rule to determine cumulative fatigue damage.
The main purpose of this dissertation is to determine and understand the severity of the presence of cracks in transmission pipelines. And to achieve that, simulations are performed using the FE tool. All data generated are presented well in this dissertation in chapters for a better understanding of the approach. |
author2 |
So Ping Lam |
author_facet |
So Ping Lam Leong, Chih Wei |
format |
Theses and Dissertations |
author |
Leong, Chih Wei |
author_sort |
Leong, Chih Wei |
title |
Development of fatigue crack growth model for high pressure natural gas transmission pipelines |
title_short |
Development of fatigue crack growth model for high pressure natural gas transmission pipelines |
title_full |
Development of fatigue crack growth model for high pressure natural gas transmission pipelines |
title_fullStr |
Development of fatigue crack growth model for high pressure natural gas transmission pipelines |
title_full_unstemmed |
Development of fatigue crack growth model for high pressure natural gas transmission pipelines |
title_sort |
development of fatigue crack growth model for high pressure natural gas transmission pipelines |
publishDate |
2018 |
url |
http://hdl.handle.net/10356/75986 |
_version_ |
1772826775185784832 |