Spiking neural network for hand-written digits classification

Artificial intelligence (AI) has been widely used in versatile applications (robot, autonomous vehicle, gaming, industry IoT, etc.), and changed the way that human being lives. Meanwhile, huge amount of data has been created in this big data era in recent years. Neural Network, as an AI technology b...

Full description

Saved in:
Bibliographic Details
Main Author: Huang, Jingyao
Other Authors: Goh Wang Ling
Format: Thesis-Master by Coursework
Language:English
Published: Nanyang Technological University 2018
Subjects:
Online Access:http://hdl.handle.net/10356/76009
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-76009
record_format dspace
spelling sg-ntu-dr.10356-760092023-07-04T15:22:13Z Spiking neural network for hand-written digits classification Huang, Jingyao Goh Wang Ling School of Electrical and Electronic Engineering EWLGOH@ntu.edu.sg DRNTU::Engineering::Electrical and electronic engineering Artificial intelligence (AI) has been widely used in versatile applications (robot, autonomous vehicle, gaming, industry IoT, etc.), and changed the way that human being lives. Meanwhile, huge amount of data has been created in this big data era in recent years. Neural Network, as an AI technology benefiting from such huge amount of data, becomes mature for commercialization. Successful examples include convolutional neural network (CNN) for image processing and recurrent neural network (RNN) for speech recognition. Compared with the former two technologies, spiking neural network (SNN), as the third-generation neural network, still has a distance from commercial application. Spiking Neural Network is a neural network which is most similar to biological neural network. The development of neuroscience makes the simulation of the biological neuron model more feasible. From Hodgkin-Huxley model of the early time to the newly raised Spike-Timing Dependent Plasticity (STDP) model, the electrochemical reaction of biological brain has been described more accurately. In this dissertation, an algorithm of SNN is implemented. Based on the STDP model and some modern dynamic biological neural system model (Homoeostasis, Lateral Inhibition, etc.), this configurable algorithm is used to achieve hand-written digits recognition based on the benchmark of MNIST dataset. A supervised layer is added following the spiking neural layer for better classification. To evaluate the algorithm, experiments of different number of digits classification are carried out and reported. Master of Science (Electronics) 2018-09-18T01:47:55Z 2018-09-18T01:47:55Z 2018 Thesis-Master by Coursework http://hdl.handle.net/10356/76009 en 60 p. application/pdf Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Electrical and electronic engineering
spellingShingle DRNTU::Engineering::Electrical and electronic engineering
Huang, Jingyao
Spiking neural network for hand-written digits classification
description Artificial intelligence (AI) has been widely used in versatile applications (robot, autonomous vehicle, gaming, industry IoT, etc.), and changed the way that human being lives. Meanwhile, huge amount of data has been created in this big data era in recent years. Neural Network, as an AI technology benefiting from such huge amount of data, becomes mature for commercialization. Successful examples include convolutional neural network (CNN) for image processing and recurrent neural network (RNN) for speech recognition. Compared with the former two technologies, spiking neural network (SNN), as the third-generation neural network, still has a distance from commercial application. Spiking Neural Network is a neural network which is most similar to biological neural network. The development of neuroscience makes the simulation of the biological neuron model more feasible. From Hodgkin-Huxley model of the early time to the newly raised Spike-Timing Dependent Plasticity (STDP) model, the electrochemical reaction of biological brain has been described more accurately. In this dissertation, an algorithm of SNN is implemented. Based on the STDP model and some modern dynamic biological neural system model (Homoeostasis, Lateral Inhibition, etc.), this configurable algorithm is used to achieve hand-written digits recognition based on the benchmark of MNIST dataset. A supervised layer is added following the spiking neural layer for better classification. To evaluate the algorithm, experiments of different number of digits classification are carried out and reported.
author2 Goh Wang Ling
author_facet Goh Wang Ling
Huang, Jingyao
format Thesis-Master by Coursework
author Huang, Jingyao
author_sort Huang, Jingyao
title Spiking neural network for hand-written digits classification
title_short Spiking neural network for hand-written digits classification
title_full Spiking neural network for hand-written digits classification
title_fullStr Spiking neural network for hand-written digits classification
title_full_unstemmed Spiking neural network for hand-written digits classification
title_sort spiking neural network for hand-written digits classification
publisher Nanyang Technological University
publishDate 2018
url http://hdl.handle.net/10356/76009
_version_ 1772826833906040832