Low power supply module design of under voltage lock out circuit

The new era has witnessed the development of the process and technique in IC field. Power management ICs are growing strongly. With the development also comes the strict demanding of power consumption, hence a UVLO (Under Voltage Lock Out) circuit is proposed to meet the wide demands in power contro...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Zhao, Shuangdi
مؤلفون آخرون: Siek Liter
التنسيق: Theses and Dissertations
اللغة:English
منشور في: 2018
الموضوعات:
الوصول للمادة أونلاين:http://hdl.handle.net/10356/76074
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:The new era has witnessed the development of the process and technique in IC field. Power management ICs are growing strongly. With the development also comes the strict demanding of power consumption, hence a UVLO (Under Voltage Lock Out) circuit is proposed to meet the wide demands in power control integrated circuit. In the design, the main modules include voltage reference, UVLO, LDO, and REFGOOD. The proposed method is to regulate the supply voltage which is used to enhance the supply rejection of the core circuit. The global supply voltage (VCC) is 0V ~ 20V. With the increasing of VCC, reference voltage ( V ) in the core circuit will set up first. Moreover, PVT compensation is represented to make the design of ref capable of operating over different process, temperature and whole supply voltage. There is a LDO module, of which the supply is VCC while the output (VDD) is the power source for other modules including UVLO and bandgap. When VCC reaches to around 5V, the local supply voltage (VDD) will be generated, which supply the power for the core circuit. The REF-GOOD signal stands for whether the voltage of LDO is ready. The UVLO module produces a rectangular signal with two different threshold voltages, satisfying the low power consumption and very low temperature draft. It is designed in the C11HV Infineon 130nm BiCMOS Technology. The module architecture and circuit have already been optimized and simulated in the design.