Refinement of random forest

Random Forest is one of the most popular Machine learning algorithms. It is an ensemble of decision trees and each tree is built using an injection of randomness. The aim of this dissertation: “REFINEMENT OF RANDOM FOREST” is to develop a refined random forest algorithm using Random Vector Functiona...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Deepika, Mathiyazhagan
مؤلفون آخرون: Ponnuthurai N. Suganthan
التنسيق: Theses and Dissertations
اللغة:English
منشور في: 2018
الموضوعات:
الوصول للمادة أونلاين:http://hdl.handle.net/10356/76335
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Random Forest is one of the most popular Machine learning algorithms. It is an ensemble of decision trees and each tree is built using an injection of randomness. The aim of this dissertation: “REFINEMENT OF RANDOM FOREST” is to develop a refined random forest algorithm using Random Vector Functional Link network as a split function to improve the performance. Random Forest has been successfully used in many data mining and computer vision tasks. Despite its immense success, it employs a greedy learning algorithm where locally-optimal decisions are made at each node. The progress of decision making at each node in random forest has been improvised by adapting Random vector functional link network. The random vector functional link network is used to split the decision nodes into two sub-nodes. The Refined Random forest algorithm has better performance as verified in extensive experiments.