Polarized neutron scattering signatures of classical spin ice
Almost a decade ago, it was proposed by Fennell et al. that polarized neutron scattering could expose the dipolar spin correlations in the classical spin ice Ho2Ti2O7, in which its sharp, distinctive “pinch-point” signatures would appear exclusively in the spin-flip (SF) neutron scattering channel,...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/76435 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-76435 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-764352023-02-28T23:12:34Z Polarized neutron scattering signatures of classical spin ice Goh, Jeremy Swee Kang Christos Panagopoulos School of Physical and Mathematical Sciences Michel Gingras DRNTU::Science::Physics::Electricity and magnetism Almost a decade ago, it was proposed by Fennell et al. that polarized neutron scattering could expose the dipolar spin correlations in the classical spin ice Ho2Ti2O7, in which its sharp, distinctive “pinch-point” signatures would appear exclusively in the spin-flip (SF) neutron scattering channel, and not in the non-SF (NSF) channel. In the same work, they showed via Monte Carlo simulations that the NSF of the nearest-neighbour (NN) spin ice, excluding the magnetic form factor, is completely featureless (i.e., no dispersions) in the (hhl) scattering plane. However, no explanation was offered by the authors for this particular observation, and this has been largely overlooked in the literature since then. In this thesis, we endeavoured to understand the origins of NSF scattering patterns (or rather, lack thereof) for classical spin ice using a combination of analytical techniques and numerical simulations. We propose two ways of understanding this phenomenon: 1) as a manifestation of the flat bands within the framework of the large-n approximation, or 2) vanishing real space correlations between chains in the pyrochlore lattice. The relevance of the flat bands to featureless NSF is exposed via analysis of the large-n matrix, while the latter is supported by Monte Carlo simulation results. Bachelor of Science in Physics 2019-02-11T02:27:27Z 2019-02-11T02:27:27Z 2019 Final Year Project (FYP) http://hdl.handle.net/10356/76435 en 119 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science::Physics::Electricity and magnetism |
spellingShingle |
DRNTU::Science::Physics::Electricity and magnetism Goh, Jeremy Swee Kang Polarized neutron scattering signatures of classical spin ice |
description |
Almost a decade ago, it was proposed by Fennell et al. that polarized neutron scattering could expose the dipolar spin correlations in the classical spin ice Ho2Ti2O7, in which its sharp, distinctive “pinch-point” signatures would appear exclusively in the spin-flip (SF) neutron scattering channel, and not in the non-SF (NSF) channel. In the same work, they showed via Monte Carlo simulations that the NSF of the nearest-neighbour (NN) spin ice, excluding the magnetic form factor, is completely featureless (i.e., no dispersions) in the (hhl) scattering plane. However, no explanation was offered by the authors for this particular observation, and this has been largely overlooked in the literature since then. In this thesis, we endeavoured to understand the origins of NSF scattering patterns (or
rather, lack thereof) for classical spin ice using a combination of analytical techniques and numerical simulations. We propose two ways of understanding this phenomenon: 1) as a manifestation of the flat bands within the framework of the large-n approximation, or 2) vanishing real space correlations between chains in the pyrochlore lattice. The relevance of the flat bands to featureless NSF is exposed via analysis of the large-n matrix, while the latter is supported by Monte Carlo simulation results. |
author2 |
Christos Panagopoulos |
author_facet |
Christos Panagopoulos Goh, Jeremy Swee Kang |
format |
Final Year Project |
author |
Goh, Jeremy Swee Kang |
author_sort |
Goh, Jeremy Swee Kang |
title |
Polarized neutron scattering signatures of classical spin ice |
title_short |
Polarized neutron scattering signatures of classical spin ice |
title_full |
Polarized neutron scattering signatures of classical spin ice |
title_fullStr |
Polarized neutron scattering signatures of classical spin ice |
title_full_unstemmed |
Polarized neutron scattering signatures of classical spin ice |
title_sort |
polarized neutron scattering signatures of classical spin ice |
publishDate |
2019 |
url |
http://hdl.handle.net/10356/76435 |
_version_ |
1759853928553381888 |