Fabrication of carbon materials by direct ink writing of hydrogel precursors

Porous carbon materials manifest excellent chemical stability, large surface area and are utilized in wide range of applications, but fabrication of structured carbon are often limited by the soft, free-flowing nature of the carbon powders. 3D printing offers unequalled flexibility to attain intrica...

Full description

Saved in:
Bibliographic Details
Main Author: Milani, Christy
Other Authors: Hu Xiao
Format: Final Year Project
Language:English
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/10356/76718
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-76718
record_format dspace
spelling sg-ntu-dr.10356-767182023-03-04T15:38:16Z Fabrication of carbon materials by direct ink writing of hydrogel precursors Milani, Christy Hu Xiao School of Materials Science and Engineering DRNTU::Engineering::Materials Porous carbon materials manifest excellent chemical stability, large surface area and are utilized in wide range of applications, but fabrication of structured carbon are often limited by the soft, free-flowing nature of the carbon powders. 3D printing offers unequalled flexibility to attain intricate geometries and high mechanical performance which are unachievable by conventional manufacturing techniques. The aim is to produce high performance and cheap structural carbon products without requiring expensive custom casting and post machining operations. In this project, a carbon precursor hydrogel blend was synthesized by reacting carbon precursors with a thermoplastic PVA matrix. Subsequently, the blended material underwent extrusion process via a 3D printing machine. This machine utilises a direct ink writing technique to fabricate complex and simple 3D structures. Moreover, sodium tetraborate was added to transform the precursor hydrogel into a flubber-like substance to aid in structure retention of the printed product. Three carbon precursors were compared and dicyandiamide was found to display better processability and carbonization product, against phthalonitrile and melamine. Characterisation techniques such as TGA, FTIR, SEM and DSC were performed to analyse the physical and chemical properties of the end products obtained from the three precursors. The experiments concluded that dicyandiamide had the ideal solubility and thermal stability. Bachelor of Engineering (Materials Engineering) 2019-04-05T06:33:30Z 2019-04-05T06:33:30Z 2019 Final Year Project (FYP) http://hdl.handle.net/10356/76718 en Nanyang Technological University 41 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Materials
spellingShingle DRNTU::Engineering::Materials
Milani, Christy
Fabrication of carbon materials by direct ink writing of hydrogel precursors
description Porous carbon materials manifest excellent chemical stability, large surface area and are utilized in wide range of applications, but fabrication of structured carbon are often limited by the soft, free-flowing nature of the carbon powders. 3D printing offers unequalled flexibility to attain intricate geometries and high mechanical performance which are unachievable by conventional manufacturing techniques. The aim is to produce high performance and cheap structural carbon products without requiring expensive custom casting and post machining operations. In this project, a carbon precursor hydrogel blend was synthesized by reacting carbon precursors with a thermoplastic PVA matrix. Subsequently, the blended material underwent extrusion process via a 3D printing machine. This machine utilises a direct ink writing technique to fabricate complex and simple 3D structures. Moreover, sodium tetraborate was added to transform the precursor hydrogel into a flubber-like substance to aid in structure retention of the printed product. Three carbon precursors were compared and dicyandiamide was found to display better processability and carbonization product, against phthalonitrile and melamine. Characterisation techniques such as TGA, FTIR, SEM and DSC were performed to analyse the physical and chemical properties of the end products obtained from the three precursors. The experiments concluded that dicyandiamide had the ideal solubility and thermal stability.
author2 Hu Xiao
author_facet Hu Xiao
Milani, Christy
format Final Year Project
author Milani, Christy
author_sort Milani, Christy
title Fabrication of carbon materials by direct ink writing of hydrogel precursors
title_short Fabrication of carbon materials by direct ink writing of hydrogel precursors
title_full Fabrication of carbon materials by direct ink writing of hydrogel precursors
title_fullStr Fabrication of carbon materials by direct ink writing of hydrogel precursors
title_full_unstemmed Fabrication of carbon materials by direct ink writing of hydrogel precursors
title_sort fabrication of carbon materials by direct ink writing of hydrogel precursors
publishDate 2019
url http://hdl.handle.net/10356/76718
_version_ 1759852937054519296